ﻻ يوجد ملخص باللغة العربية
In this article, we define two-particle system in Coulomb potential for twist-deformed space-time with spatial directions commuting to time-dependent function $f_{kappa_a}({t})$. Particularly, we provide the proper Hamiltonian function and further, we rewrite it in terms of commutative variables. Besides, we demonstrate, that for small values of deformation parameters, the obtained in the perturbation framework, first-ordered corrections for ground Helium energy are equal to zero. In such a way we show, that nontrivial impact of space-time noncommutativity appears only at the second order of the quantum-mechanical correction expansion.
In this article, we define the Pauli Hamiltonian function for twist-deformed N-enlarged Newton-Hooke space-time provided in article [12]. Further, we derive its energy spectrum, i.e., we find the corresponding eigenvalues as well as the proper eigenfunctions.
In this article we discus the energy-momentum conservation principle for two-particle system in the case of canonically and Lie-algebraically twist-deformed Galilei Hopf algebra. Particularly, we provide consistent with the coproducts energy and mome
In this article we find the Zeeman corrections for hydrogen atom in the case of twist-deformed space-time. Particularly, we derive the corresponding orbital and spin $hat{g}$-factors as well as we notice, that the second one of them remains undeformed.
In this article we provide the Henon-Heiles system defined on Lie-algebraically deformed nonrelativistic space-time with the commutator of two spatial directions proportional to time. Particularly, we demonstrate that in such a model the total energy
In this paper we examine the scattering processes among the members of a rich family of kinks which arise in a (1+1)-dimensional relativistic two scalar field theory. These kinks carry two different topological charges that determine the mutual inter