ﻻ يوجد ملخص باللغة العربية
It is well known that every positive integer can be expressed as a sum of nonconsecutive Fibonacci numbers provided the Fibonacci numbers satisfy $F_n =F_{n-1}+F_{n-2}$ for $ngeq 3$, $F_1 =1$ and $F_2 =2$. In this paper, for any $n,minmathbb{N}$ we create a sequence called the $(n,m)$-bin sequence with which we can define a notion of a legal decomposition for every positive integer. These sequences are not always positive linear recurrences, which have been studied in the literature, yet we prove, that like positive linear recurrences, these decompositions exist and are unique. Moreover, our main result proves that the distribution of the number of summands used in the $(n,m)$-bin legal decompositions displays Gaussian behavior.
We describe a new algorithm, the $(k,ell)$-pebble game with colors, and use it obtain a characterization of the family of $(k,ell)$-sparse graphs and algorithmic solutions to a family of problems concerning tree decompositions of graphs. Special inst
We describe a new algorithm, the $(k,\\ell)$-pebble game with colors, and use\nit obtain a characterization of the family of $(k,\\ell)$-sparse graphs and\nalgorithmic solutions to a family of problems concerning tree decompositions of\ngraphs. Spe
In 1976, Alspach, Mason, and Pullman conjectured that any tournament $T$ of even order can be decomposed into exactly ${rm ex}(T)$ paths, where ${rm ex}(T):= frac{1}{2}sum_{vin V(T)}|d_T^+(v)-d_T^-(v)|$. We prove this conjecture for all sufficiently
Let $G$ be a graph whose edges are coloured with $k$ colours, and $mathcal H=(H_1,dots , H_k)$ be a $k$-tuple of graphs. A monochromatic $mathcal H$-decomposition of $G$ is a partition of the edge set of $G$ such that each part is either a single edg
It is proved that if a graph is regular of even degree and contains a Hamilton cycle, or regular of odd degree and contains a Hamiltonian $3$-factor, then its line graph is Hamilton decomposable. This result partially extends Kotzigs result that a $3