ﻻ يوجد ملخص باللغة العربية
We present a method for modelling textile structures, such as weft knits, on families of bicontinuous surfaces. By developing a tangible interpretation of mathematical theory, we combine perspectives of art, design, engineering, and science to understand how the architecture of the knit relates to its physical and mathematical properties. While modelling and design tools have become ubiquitous in many industries, there is still a significant lack of predictive advanced manufacturing techniques available for the design and manufacture of textiles. We describe a mathematical structure as a system for dynamic modelling of textiles in the form of a physical prototype which may be used to inform and predict relevant textile parameters prior to fabrication. This includes dimensional changes due to yarn relaxation, which would streamline production of knit textiles for industry, makers and textile artists.
Amphiphiles are molecules which have both hydrophilic and hydrophobic parts. In water- and/or oil-like solvent, they self-assemble into extended sheet-like structures due to the hydrophobic effect. The free energy of an amphiphilic system can be writ
Coarsening of bicontinuous microstructures is observed in a variety of systems, such as nanoporous metals and mixtures that have undergone spinodal decomposition. To better understand the morphological evolution of these structures during coarsening,
A simple model was constructed to describe the polar ordering of non-centrosymmetric supramolecular aggregates formed by self assembling triblock rodcoil polymers. The aggregates are modeled as dipoles in a lattice with an Ising-like penalty associat
A method for forming permanent three dimensional structures from colloidal particles using holographic optical trapping is described. Holographic optical tweezers (HOT) are used to selectively position charge stabilized colloidal particles within a f
Rough or textured hydrophobic surfaces are dubbed superhydrophobic due to their numerous desirable properties, such as water repellency and interfacial slip. Superhydrophobicity stems from an aversion for water to wet the surface texture, so that a w