ترغب بنشر مسار تعليمي؟ اضغط هنا

A compact frequency-stabilized pump laser for wavelength conversion in long-distance quantum communication

63   0   0.0 ( 0 )
 نشر من قبل Kohei Ikeda
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a compact frequency-stabilized laser at 1064 nm using Doppler-free saturation absorption spectroscopy of molecular iodine. The achieved laser frequency stability and linewidth are 5.7 10-12 (corresponding to an uncertainty of the laser frequency of 1.6 kHz) and 400 kHz, respectively. The developed frequency-stabilized laser can be used as a pump laser for wavelength conversion from visible to telecom (or vice versa) to connect quantum memories utilizing nitrogen-vacancy centers in diamond at remote nodes in fiber-based quantum communication.



قيم البحث

اقرأ أيضاً

113 - Yu Ding , Z. Y. Ou 2010
By using parametric down-conversion process with a strong signal field injection, we demonstrate coherent frequency down-conversion from a pump photon to an idler photon. Contrary to a common misunderstanding, we show that the process can be free of quantum noise. With an interference experiment, we demonstrate that the coherence is preserved in the conversion process. This may lead to a high fidelity quantum state transfer from high frequency photon to low frequency photon and connects a missing link in a quantum network. With this scheme of coherent frequency down-conversion of photons, we propose a method of single-photon wavelength division multiplexing.
Despite the tremendous progress of quantum cryptography, efficient quantum communication over long distances (>1000km) remains an outstanding challenge due to fiber attenuation and operation errors accumulated over the entire communication distance. Quantum repeaters, as a promising approach, can overcome both photon loss and operation errors, and hence significantly speedup the communication rate. Depending on the methods used to correct loss and operation errors, all the proposed QR schemes can be classified into three categories (generations). Here we present the first systematic comparison of three generations of quantum repeaters by evaluating the cost of both temporal and physical resources, and identify the optimized quantum repeater architecture for a given set of experimental parameters. Our work provides a roadmap for the experimental realizations of highly efficient quantum networks over transcontinental distances.
High-quality long-distance entanglement is essential for both quantum communication and scalable quantum networks. Entanglement purification is to distill high-quality entanglement from low-quality entanglement in a noisy environment and it plays a k ey role in quantum repeaters. The previous significant entanglement purification experiments require two pairs of low-quality entangled states and were demonstrated in table-top. Here we propose and report a high-efficiency and long-distance entanglement purification using only one pair of hyperentangled states. We also demonstrate its practical application in entanglement-based quantum key distribution (QKD). One pair of polarization spatial-mode hyperentanglement was distributed over 11 km multicore fiber (noisy channel). After purification, the fidelity of polarization entanglement arises from 0.771 to 0.887 and the effective key rate in entanglement-based QKD increases from 0 to 0.332. The values of Clauser-Horne-Shimony-Holt (CHSH) inequality of polarization entanglement arises from 1.829 to 2.128. Moreover, by using one pair of hyperentanglement and deterministic controlled-NOT gate, the total purification efficiency can be estimated as 6.6x10^3 times than the experiment using two pairs of entangled states with spontaneous parametric down-conversion (SPDC) sources. Our results offer the potential to be implemented as part of a full quantum repeater and large scale quantum network.
The architecture proposed by Duan, Lukin, Cirac, and Zoller (DLCZ) for long-distance quantum communication with atomic ensembles is analyzed. Its fidelity and throughput in entanglement distribution, entanglement swapping, and quantum teleportation i s derived within a framework that accounts for multiple excitations in the ensembles as well as loss and asymmetries in the channel. The DLCZ performance metrics that are obtained are compared to the corresponding results for the trapped-atom quantum communication architecture that has been proposed by a team from the Massachusetts Institute of Technology and Northwestern University (MIT/NU). Both systems are found to be capable of high-fidelity entanglement distribution. However, the DLCZ scheme only provides conditional teleportation and repeater operation, whereas the MIT/NU architecture affords full Bell-state measurements on its trapped atoms. Moreover, it is shown that achieving unity conditional fidelity in DLCZ teleportation and repeater operation requires ideal photon-number resolving detectors. The maximum conditional fidelities for DLCZ teleportation and repeater operation that can be realized with non-resolving detectors are 1/2 and 2/3, respectively.
Quantum repeaters are required for long-distance quantum communication. For efficient coupling of quantum entangled photon sources with narrow-linewidth quantum memories we performed the frequency stabilization of two lasers at 1514 and 1010 nm. The 1514 nm pump laser of the entangled photon source exhibited a frequency stability of 3.6 times 10^{-12} (tau = 1 s). The 1010 nm pump laser of the wavelength conversion system exhibited a frequency stability of 3.4 times 10^{-12} (tau = 1 s). The stabilities of both lasers were approximately two orders of magnitude smaller than the frequency width of 4 MHz of the Pr:YSO quantum memory. Such frequency-stabilized lasers can realize the remote coupling of a quantum memory and an entangled photon source in quantum repeaters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا