ﻻ يوجد ملخص باللغة العربية
Compact object mergers can produce a thermal electromagnetic counterpart (a kilonova) powered by the decay of freshly synthesized radioactive isotopes. The luminosity of kilonova light curves depends on the efficiency with which beta-decay electrons are thermalized in the ejecta. Here we derive a simple analytic solution for thermalization by calculating how electrons accumulate in the ejecta and lose energy adiabatically and via plasma losses. We find that the time-dependent thermalization efficiency is well described by $f(t) approx (1 + t/t_e)^{-n}$ where $n approx 1$ and the timescale $t_e$ is a function of the ejecta mass and velocity. For a statistical distribution of r-process isotopes with radioactive power $dot{Q} propto t^{-4/3}$, the late time kilonova luminosity asymptotes to $L propto t^{-7/3}$ and depends super-linearly on the ejecta mass, $L propto M^{5/3}$. If a kilonova is instead powered by a single dominate isotope, we show that the late time luminosity can deviate substantially from the underlying exponential decay and eventually become brighter than the instantaneous radioactivity due to the accumulation of trapped electrons. Applied to the kilonova associated with the gravitational wave source GW170817, these results imply that a possible steepening of the observed light curve at $gtrsim 7$ days is unrelated to thermalization effects and instead could mark the onset of translucency in a high opacity component of ejecta. The analytic results should be convenient for estimating the properties of observed kilonovae and assessing the potential late time detectability of future events.
Neutron star mergers offer unique conditions for the creation of the heavy elements and additionally provide a testbed for our understanding of this synthesis known as the $r$-process. We have performed dynamical nucleosynthesis calculations and iden
The merger of neutron star binaries is believed to eject a wide range of heavy elements into the universe. By observing the emission from this ejecta, scientists can probe the ejecta properties (mass, velocity and composition distributions). The emis
The mergers of binary neutron stars, as well as black hole-neutron star systems, are expected to produce an electromagnetic counterpart that can be analyzed to infer the element synthesis that occurred in these events. We investigate one source of un
The merger of two neutron stars (NSs) or a neutron star and a black hole (BH) produces a radioactively-powered transient known as a kilonova, first observed accompanying the gravitational wave event GW170817. While kilonovae are frequently modeled in
The light curves of Type Ia supernovae are routinely used to constrain cosmology models. Driven by radioactive decay of 56Ni, the light curves steadily decline over time, but >150 days past explosion, the near-infrared portion is poorly characterized