ترغب بنشر مسار تعليمي؟ اضغط هنا

A magnified view of circumnuclear star formation and feedback around an AGN at z=2.6

72   0   0.0 ( 0 )
 نشر من قبل James Geach
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. E. Geach




اسأل ChatGPT حول البحث

We present Atacama Large Millimeter/submillimeter Array observations of a radio-loud and millimeter-bright galaxy at z=2.6. Gravitational lensing by a foreground galaxy at z~0.2 provides access to physical scales of approximately 360 pc, and we resolve a 2.5 kpc-radius ring of star-forming molecular gas, traced by atomic carbon CI(1-0) and carbon monoxide CO(4-3). We also detect emission from the cyanide radical, CN(4-3). With a velocity width of 680 km/s, this traces dense molecular gas travelling at velocities nearly a factor of two larger than the rotation speed of the molecular ring. While this could indicate the presence of a dynamical and photochemical interaction between the active galactic nucleus and molecular interstellar medium on scales of a few 100 pc, on-going feedback is unlikely to have a significant impact on the assembly of stellar mass in the molecular ring, given the ~10s Myr depletion timescale due to star formation.

قيم البحث

اقرأ أيضاً

97 - R. Gilli , M. Mignoli , A. Peca 2019
We report the discovery of a galaxy overdensity around a Compton-thick Fanaroff-Riley type II (FRII) radio galaxy at z=1.7 in the deep multiband survey around the z=6.3 QSO SDSS J1030+0524. Based on a 6hr VLT/MUSE and on a 4hr LBT/LUCI observation, w e identify at least eight galaxy members in this structure with spectroscopic redshift z=1.687-1.699, including the FRII galaxy at z=1.699. Most of the identified overdensity members are blue, compact galaxies that are actively forming stars at rates of $sim$8-60 $M_{odot}$ yr$^{-1}$. Based on a 500ks Chandra ACIS-I observation we found that the FRII nucleus hosts a luminous QSO ($L_{2-10keV}=1.3times10^{44}$ erg s$^{-1}$, intrinsic and rest-frame) that is obscured by Compton-thick absorption ($N_H=1.5pm0.6times 10^{24}$ cm$^{-2}$). Our Chandra observation, the deepest so far for a distant FRII within a galaxy overdensity, revealed significant diffuse X-ray emission within the region covered by the overdensity. In particular, X-ray emission extending for $sim$240 kpc is found around the Eastern lobe of the FRII. Four out of the six MUSE star forming galaxies in the overdensity are distributed in an arc-like shape at the edge of this diffuse X-ray emission. The probability of observing by chance four out of the six $z=1.7$ sources at the edge of the diffuse emission is negligible. In addition, these four galaxies have the highest specific star formation rates of the MUSE galaxies in the overdensity and lie above the main sequence of field galaxies of equal stellar mass at z=1.7. We propose that the diffuse X-rays originate from an expanding bubble of gas that is shock-heated by the FRII jet, and that star formation is promoted by the compression of the cold interstellar medium of the galaxies around the bubble, which may be remarkable evidence of positive AGN feedback on cosmological scales. [shortened version]
We present a detailed analysis of multi-wavelength HST/WFC3 imaging and Keck/OSIRIS near-IR AO-assisted integral field spectroscopy for a highly magnified lensed galaxy at z=1.70. This young starburst is representative of UV-selected star-forming gal axies (SFG) at z~2 and contains multiple individual star-forming regions. Due to the lensing magnification, we can resolve spatial scales down to 100pc in the source plane of the galaxy. The velocity field shows disturbed kinematics suggestive of an ongoing interaction, and there is a clear signature of a tidal tail. We constrain the age, reddening, SFR and stellar mass of the star-forming clumps from SED modelling of the WFC3 photometry and measure their H-alpha luminosity, metallicity and outflow properties from the OSIRIS data. With strong star formation driven outflows in four clumps, RCSGA0327 is the first high redshift SFG at stellar mass <10^10 M_sun with spatially resolved stellar winds. We compare the H-alpha luminosities, sizes and dispersions of the star-forming regions to other high-z clumps as well as local giant HII regions and find no evidence for increased clump star formation surface densities in interacting systems, unlike in the local Universe. Spatially resolved SED modelling unveils an established stellar population at the location of the largest clump and a second mass concentration near the edge of the system which is not detected in H-alpha emission. This suggests a picture of an equal-mass mixed major merger, which has not triggered a new burst of star formation or caused a tidal tail in the gas-poor component.
We present the correlations between stellar mass, star formation rate (SFR) and [NII]/Ha flux ratio as indicator of gas-phase metallicity for a sample of 222 galaxies at 0.8 < z < 2.6 and log(M*/Msun)=9.0-11.5 from the LUCI, SINS/zC-SINF and KMOS3D s urveys. This sample provides a unique analysis of the mass-metallicity relation (MZR) over an extended redshift range using consistent data analysis techniques and strong-line metallicity indicator. We find a constant slope at the low-mass end of the relation and can fully describe its redshift evolution through the evolution of the characteristic turnover mass where the relation begins to flatten at the asymptotic metallicity. At fixed mass and redshift, our data do not show a correlation between the [NII]/Ha ratio and SFR, which disagrees with the 0.2-0.3dex offset in [NII]/Ha predicted by the fundamental relation between stellar mass, SFR and metallicity discussed in recent literature. However, the overall evolution towards lower [NII]/Ha at earlier times does broadly agree with these predictions.
Understanding the relationship between the formation and evolution of galaxies and their central super massive black holes (SMBH) is one of the main topics in extragalactic astrophysics. Links and feedback may reciprocally affect both black hole and galaxy growth. Observations of the CO line at redshifts of 2-4 are crucial to investigate the gas mass, star formation activity and accretion onto SMBHs, as well as the effect of AGN feedback. Potential correlations between AGN and host galaxy properties can be highlighted by observing extreme objects. Despite their luminosity, hyper-luminous QSOs at z=2-4 are still little studied at mm wavelengths. We targeted CO(3-2) in ULAS J1539+0557, an hyper-luminos QSO (Lbol> 10^48 erg/s) at z=2.658, selected through its unusual red colors in the UKIDSS Large Area Survey (ULAS). We find a molecular gas mass of 4.1+-0.8 10^10 Msun, and a gas fraction of 0.4-0.1, depending mostly on the assumed source inclination. We also find a robust lower limit to the star-formation rate (SFR=250-1600 Msun/yr) and star-formation efficiency (SFE=25-350 Lsun/(K km s-1 pc2) by comparing the observed optical-near-infrared spectral energy distribution with AGN and galaxy templates. The black hole gas consumption timescale, M(H_2)/dM(accretion)/dt, is ~160 Myr, similar or higher than the gas consumption timescale. The gas content and the star formation efficiency are similar to those of other high-luminosity, highly obscured QSOs, and at the lower end of the star-formation efficiency of unobscured QSOs, in line with predictions from AGN-galaxy co-evolutionary scenarios. Further measurements of the (sub)-mm continuum in this and similar sources are mandatory to obtain a robust observational picture of the AGN evolutionary sequence.
We present spectral energy distributions (SEDs) of 69 QSOs at z>5, covering a rest frame wavelength range of 0.1mu to ~80mu, and centered on new Spitzer and Herschel observations. The detection rate of the QSOs with Spitzer is very high (97% at lambd a_rest ~< 4mu), but drops towards the Herschel bands with 30% detected in PACS (rest frame mid-infrared) and 15% additionally in the SPIRE (rest frame far-infrared; FIR). We perform multi-component SED fits for Herschel-detected objects and confirm that to match the observed SEDs, a clumpy torus model needs to be complemented by a hot (~1300K) component and, in cases with prominent FIR emission, also by a cold (~50K) component. In the FIR detected cases the luminosity of the cold component is on the order of 10^13 L_sun which is likely heated by star formation. From the SED fits we also determine that the AGN dust-to-accretion disk luminosity ratio declines with UV/optical luminosity. Emission from hot (~1300K) dust is common in our sample, showing that nuclear dust is ubiquitous in luminous QSOs out to redshift 6. However, about 15% of the objects appear under-luminous in the near infrared compared to their optical emission and seem to be deficient in (but not devoid of) hot dust. Within our full sample, the QSOs detected with Herschel are found at the high luminosity end in L_UV/opt and L_NIR and show low equivalent widths (EWs) in H_alpha and in Ly_alpha. In the distribution of H_alpha EWs, as determined from the Spitzer photometry, the high-redshift QSOs show little difference to low redshift AGN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا