ﻻ يوجد ملخص باللغة العربية
Jets from boosted heavy particles have a typical angular scale which can be used to distinguish them from QCD jets. We introduce a machine learning strategy for jet substructure analysis using a spectral function on the angular scale. The angular spectrum allows us to scan energy deposits over the angle between a pair of particles in a highly visual way. We set up an artificial neural network (ANN) to find out characteristic shapes of the spectra of the jets from heavy particle decays. By taking the Higgs jets and QCD jets as examples, we show that the ANN of the angular spectrum input has similar performance to existing taggers. In addition, some improvement is seen when additional extra radiations occur. Notably, the new algorithm automatically combines the information of the multi-point correlations in the jet.
By representing each collider event as a point cloud, we adopt the Graphic Convolutional Network (GCN) with focal loss to reconstruct the Higgs jet in it. This method provides higher Higgs tagging efficiency and better reconstruction accuracy than th
In this work, we present a new technique to measure the longitudinal and transverse polarization fractions of hadronic decays of boosted $W$ bosons. We introduce a new jet substructure observable denoted as $p_theta$, which is a proxy for the parton
Top polarization is an important probe of new physics that couples to the top sector, and which may be discovered at the 14 TeV LHC. Taking the example of the MSSM, we argue that top polarization measurements can put a constraint on the soft supersym
This report of the BOOST2012 workshop presents the results of four working groups that studied key aspects of jet substructure. We discuss the potential of the description of jet substructure in first-principle QCD calculations and study the accuracy
We present an investigation of the dependence of searches for boosted Higgs bosons using jet substructure on the perturbative and non-perturbative parameters of the Herwig++ Monte Carlo event generator. Values are presented for a new tune of the para