ترغب بنشر مسار تعليمي؟ اضغط هنا

Narrow-line Seyfert 1s: what is wrong in a name?

70   0   0.0 ( 0 )
 نشر من قبل Paola Marziani
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Narrow-line Seyfert 1s (NLSy1s) are an ill-defined class. Work done over the past 20 years as well as recent analyses show a continuity in properties (e.g., Balmer line profiles, blueshifts of high-ionization lines) between sources with FWHM above and below 2000 km/s, the defining boundary of NLSy1s. This finding alone suggests that comparisons between samples of NLSy1s and rest of broad-line AGNs are most likely biased. NLSy1s can be properly contextualized by their location on the quasar main sequence originally defined by Sulentic et al 2000. At one end, NLSy1s encompass sources with strong FeII emission and associated with high Eddington ratio that hold the promise of becoming useful distance indicators; at the other end, at least some of them are sources with broad profiles seen face-on. Any rigid FWHM limit gives rise to some physical ambiguity, as the FWHM of low-ionization lines depends in a complex way on mass, Eddington ratio, orientation, and luminosity. In addition, if the scaling derived from luminosity and virial dynamics applies to the broad line regions, NLSy1s at luminosity higher than 1E47 erg/s become physically impossible. Therefore, in a broader context, a proper subdivision of two distinct classes of AGNs and quasars may be achieved by the distinction between Pop. A and B with boundary at = 4000 km/s in samples at z < 1, or on the basis of spectrophotometric properties which may ultimately be related to differences in accretion modes if high-luminosity quasars are considered.

قيم البحث

اقرأ أيضاً

Two major challenges to unification schemes for active galactic nuclei (AGN) are the existence of Narrow-Line Seyfert 1s (NLS1s) and the existence of changing-look (CL) AGNs. AGNs can drastically change their spectral appearance in the optical (chang ing their Seyfert type) and/or in the X-ray region. We illustrate the CL phenomenon with our multi-wavelength monitoring of NGC 2617 and discuss its properties compared with NLS1s. There are few examples of CL NLS1s and the changes are mostly only in the X-ray region. It has been proposed that some of these could be cases of a tidal-disruption events (TDE) or supernova events. If BLRs have a flat geometry and NLS1s are seen face-on then we have to see CL cases only if the orientation of the BLR changes as a result of a TDE or a close encounter of a star without a TDE. If NLS1s include both high Eddington accretion rate and low-inclination AGNs then a significant fraction of NLS1s could be obscured and would not be identified as NLS1s. CL cases might happen more in such objects if dust sublimation occurs following a strong increase in the optical luminosity.
Narrow-line Seyfert 1 galaxies (NLS1s) are active galactic nuclei (AGN) recently identified as a new class of $gamma$-ray sources. The high energy emission is explained by the presence of a relativistic jet observed at small angles, just like in the case of blazars. When the latter are observed at larger angles they appear as radio-galaxies, but an analogue parent population for beamed NLS1s has not yet been determined. In this work we analyze this problem by studying the physical properties of three different samples of parent sources candidates: steep-spectrum radio-loud NLS1s, radio-quiet NLS1s, and disk-hosted radio-galaxies, along with compact steep-spectrum sources. In our approach, we first derived black hole mass and Eddington ratio from the optical spectra, then we investigated the interaction between the jet and the narrow-line region from the [O III] $lambdalambda$4959,5007 lines. Finally, the radio luminosity function allowed us to compare their jet luminosity and hence determine the relations between the samples.
121 - M. Orienti 2015
We report results on multiband observations from radio to gamma-rays of the two radio-loud narrow-line Seyfert 1 (NLSy1) galaxies PKS 2004-447 and J1548+3511. Both sources show a core-jet structure on parsec scale, while they are unresolved at the ar csecond scale. The high core dominance and the high variability brightness temperature make these NLSy1 galaxies good gamma-ray source candidates. Fermi-LAT detected gamma-ray emission only from PKS 2004-447, with a gamma-ray luminosity comparable to that observed in blazars. No gamma-ray emission is observed for J1548+3511. Both sources are variable in X-rays. J1548+3511 shows a hardening of the spectrum during high activity states, while PKS 2004-447 has no spectral variability. A spectral steepening likely related to the soft excess is hinted below 2 keV for J1548+3511, while the X-ray spectra of PKS 2004-447 collected by XMM-Newton in 2012 are described by a single power-law without significant soft excess. No additional absorption above the Galactic column density or the presence of an Fe line is detected in the X-ray spectra of both sources.
103 - M. Valencia-S. 2013
No. Due to their apparently extreme optical to X-ray properties, Narrow Line Seyfert 1s (NLSy1s) have been considered a special class of active galactic nuclei (AGN). Here, we summarize observational results from different groups to conclude that non e of the characteristics that are typically used to define the NLSy1s as a distinct group - from the, nowadays called, Broad Line Seyfert 1s (BLSy1s) - is unique, nor ubiquitous of these particular sources, but shared by the whole Type 1 AGN. Historically, the NLSy1s have been distinguished from the BLSy1s by the narrow width of the broad Hbeta emission line. The upper limit on the full width at half maximum of this line is 2000 km/s for NLSy1s, while in BLSy1s it can be of several thousands of km/s. However, this border has been arbitrarily set and does not correspond to the change of any physical property. All observed parameters in Type 1 AGN cover continues ranges of values, which does not allow to infer the existence of two different kind of populations with FWHM(Hbeta,broad) = 2000 km/s as dividing point. We argue that the usage of this velocity limit to define samples of NLSy1s galaxies - as it is usually done in comparative studies -, together with the well known observational biases, naturally favors the selection of sources with low black hole masses and high Eddington ratios that are hosted by blue spiral galaxies. Therefore selection biases might be responsible for the reported differences between NLSy1 and BLSy1 sources.
We consider whether Broad Absorption Line Quasars (BAL QSOs) and Narrow Line Seyfert 1 galaxies (NLS1s) are similar, as suggested by Brandt & Gallagher (2000) and Boroson (2002). For this purpose we constructed a sample of 11 BAL QSOs from existing C handra and Swift observations. We found that BAL QSOs and NLS1s both operate at high Eddington ratios L/Ledd, although BAL QSOs have slightly lower L/Ledd. BAL QSOs and NLS1s in general have high FeII/H$beta$ and low [OIII]/H$beta$ ratios following the classic Boroson & Green eigenvector 1 relation. We also found that the mass accretion rates $dot{M}$ of BAL QSOs and NLS1s are more similar than previously thought, although some BAL QSOs exhibit extreme mass accretion rates of more than 10 msun/year. These extreme mass accretion rates may suggest that the black holes in BAL QSOs are relativistically spinning. Black hole masses in BAL QSOs are a factor of 100 larger than NLS1s. From their location on a M-$sigma$ plot, we find that BAL QSOs contain fully developed black holes. Applying a principal component analysis to our sample we find eigenvector 1 to correspond to the Eddington ratio L/Ledd, and eigenvector 2 to black hole mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا