ﻻ يوجد ملخص باللغة العربية
We demonstrate light-induced formation of coherence in a cold atomic gas system that utilizes the suppression of a competing density wave (DW) order. The condensed atoms are placed in an optical cavity and pumped by an external optical standing wave, which induces a long-range interaction mediated by photon scattering and a resulting DW order above a critical pump strength. We show that light-induced temporal modulation of the pump wave can suppress this DW order and restore coherence. This establishes a foundational principle of dynamical control of competing orders analogous to a hypothesized mechanism for light-induced superconductivity in high-$T_c$ cuprates.
We theoretically and experimentally explore the emergence of a dynamical density wave order in a driven dissipative atom-cavity system. A Bose-Einstein condensate is placed inside a high finesse optical resonator and pumped sideways by an optical sta
We propose a scheme to probe quantum coherence in the state of a nano-cantilever based on its magnetic coupling (mediated by a magnetic tip) with a spinor Bose Einstein condensate (BEC). By mapping the BEC into a rotor, its coupling with the cantilev
In this paper we explore the rich structure of macroscopic many-particle quantum states for Bose- Einstein condensate in an optical cavity with the tunable nonlinear atom-photon interaction [Nature (London) 464, 1301 (2010)]. Population inversion, bi
We propose the dynamical stabilization of a nonequilibrium order in a driven dissipative system comprised an atomic Bose-Einstein condensate inside a high finesse optical cavity, pumped with an optical standing wave operating in the regime of anomalo
The distributed quantum computation plays an important role in large-scale quantum information processing. In the atom-cavity-fiber system, we put forward two efficient proposals to prepare the steady entanglement of two distant atoms with dissipatio