ترغب بنشر مسار تعليمي؟ اضغط هنا

CAIL2018: A Large-Scale Legal Dataset for Judgment Prediction

128   0   0.0 ( 0 )
 نشر من قبل Cunchao Tu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we introduce the textbf{C}hinese textbf{AI} and textbf{L}aw challenge dataset (CAIL2018), the first large-scale Chinese legal dataset for judgment prediction. dataset contains more than $2.6$ million criminal cases published by the Supreme Peoples Court of China, which are several times larger than other datasets in existing works on judgment prediction. Moreover, the annotations of judgment results are more detailed and rich. It consists of applicable law articles, charges, and prison terms, which are expected to be inferred according to the fact descriptions of cases. For comparison, we implement several conventional text classification baselines for judgment prediction and experimental results show that it is still a challenge for current models to predict the judgment results of legal cases, especially on prison terms. To help the researchers make improvements on legal judgment prediction, both dataset and baselines will be released after the CAIL competitionfootnote{http://cail.cipsc.org.cn/}.



قيم البحث

اقرأ أيضاً

In this paper, we give an overview of the Legal Judgment Prediction (LJP) competition at Chinese AI and Law challenge (CAIL2018). This competition focuses on LJP which aims to predict the judgment results according to the given facts. Specifically, i n CAIL2018 , we proposed three subtasks of LJP for the contestants, i.e., predicting relevant law articles, charges and prison terms given the fact descriptions. CAIL2018 has attracted several hundreds participants (601 teams, 1, 144 contestants from 269 organizations). In this paper, we provide a detailed overview of the task definition, related works, outstanding methods and competition results in CAIL2018.
104 - Nuo Xu , Pinghui Wang , Long Chen 2020
Legal Judgment Prediction (LJP) is the task of automatically predicting a law cases judgment results given a text describing its facts, which has excellent prospects in judicial assistance systems and convenient services for the public. In practice, confusing charges are frequent, because law cases applicable to similar law articles are easily misjudged. For addressing this issue, the existing method relies heavily on domain experts, which hinders its application in different law systems. In this paper, we present an end-to-end model, LADAN, to solve the task of LJP. To distinguish confusing charges, we propose a novel graph neural network to automatically learn subtle differences between confusing law articles and design a novel attention mechanism that fully exploits the learned differences to extract compelling discriminative features from fact descriptions attentively. Experiments conducted on real-world datasets demonstrate the superiority of our LADAN.
An automated system that could assist a judge in predicting the outcome of a case would help expedite the judicial process. For such a system to be practically useful, predictions by the system should be explainable. To promote research in developing such a system, we introduce ILDC (Indian Legal Documents Corpus). ILDC is a large corpus of 35k Indian Supreme Court cases annotated with original court decisions. A portion of the corpus (a separate test set) is annotated with gold standard explanations by legal experts. Based on ILDC, we propose the task of Court Judgment Prediction and Explanation (CJPE). The task requires an automated system to predict an explainable outcome of a case. We experiment with a battery of baseline models for case predictions and propose a hierarchical occlusion based model for explainability. Our best prediction model has an accuracy of 78% versus 94% for human legal experts, pointing towards the complexity of the prediction task. The analysis of explanations by the proposed algorithm reveals a significant difference in the point of view of the algorithm and legal experts for explaining the judgments, pointing towards scope for future research.
Legal judgment prediction(LJP) is an essential task for legal AI. While prior methods studied on this topic in a pseudo setting by employing the judge-summarized case narrative as the input to predict the judgment, neglecting critical case life-cycle information in real court setting could threaten the case logic representation quality and prediction correctness. In this paper, we introduce a novel challenging dataset from real courtrooms to predict the legal judgment in a reasonably encyclopedic manner by leveraging the genuine input of the case -- plaintiffs claims and court debate data, from which the cases facts are automatically recognized by comprehensively understanding the multi-role dialogues of the court debate, and then learnt to discriminate the claims so as to reach the final judgment through multi-task learning. An extensive set of experiments with a large civil trial data set shows that the proposed model can more accurately characterize the interactions among claims, fact and debate for legal judgment prediction, achieving significant improvements over strong state-of-the-art baselines. Moreover, the user study conducted with real judges and law school students shows the neural predictions can also be interpretable and easily observed, and thus enhancing the trial efficiency and judgment quality.
In a legal system, judgment consistency is regarded as one of the most important manifestations of fairness. However, due to the complexity of factual elements that impact sentencing in real-world scenarios, few works have been done on quantitatively measuring judgment consistency towards real-world data. In this paper, we propose an evaluation metric for judgment inconsistency, Legal Inconsistency Coefficient (LInCo), which aims to evaluate inconsistency between data groups divided by specific features (e.g., gender, region, race). We propose to simulate judges from different groups with legal judgment prediction (LJP) models and measure the judicial inconsistency with the disagreement of the judgment results given by LJP models trained on different groups. Experimental results on the synthetic data verify the effectiveness of LInCo. We further employ LInCo to explore the inconsistency in real cases and come to the following observations: (1) Both regional and gender inconsistency exist in the legal system, but gender inconsistency is much less than regional inconsistency; (2) The level of regional inconsistency varies little across different time periods; (3) In general, judicial inconsistency is negatively correlated with the severity of the criminal charges. Besides, we use LInCo to evaluate the performance of several de-bias methods, such as adversarial learning, and find that these mechanisms can effectively help LJP models to avoid suffering from data bias.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا