ﻻ يوجد ملخص باللغة العربية
We present results on searches for gamma-ray counterparts of the LIGO/Virgo gravitational-wave events using CALorimetric Electron Telescope ({sl CALET}) observations. The main instrument of {sl CALET}, CALorimeter (CAL), observes gamma-rays from $sim1$ GeV up to 10 TeV with a field of view of nearly 2 sr. In addition, the {sl CALET} gamma-ray burst monitor (CGBM) views $sim$3 sr and $sim2pi$ sr of the sky in the 7 keV -- 1 MeV and the 40 keV -- 20 MeV bands, respectively, by using two different crystal scintillators. The {sl CALET} observations on the International Space Station started in October 2015, and here we report analyses of events associated with the following gravitational wave events: GW151226, GW170104, GW170608, GW170814 and GW170817. Although only upper limits on gamma-ray emission are obtained, they correspond to a luminosity of $10^{49}sim10^{53}$ erg s$^{-1}$ in the GeV energy band depending on the distance and the assumed time duration of each event, which is approximately the order of luminosity of typical short gamma-ray bursts. This implies there will be a favorable opportunity to detect high-energy gamma-ray emission in further observations if additional gravitational wave events with favorable geometry will occur within our field-of-view. We also show the sensitivity of {sl CALET} for gamma-ray transient events which is the order of $10^{-7}$~erg,cm$^{-2}$,s$^{-1}$ for an observation of 100~s duration.
We present upper limits in the hard X-ray and gamma-ray bands at the time of the LIGO gravitational-wave event GW 151226 derived from the CALorimetric Electron Telescope (CALET) observation. The main instrument of CALET, CALorimeter (CAL), observes g
An offline search for a neutrino counterpart to gravitational-wave (GW) events detected during the second observation run (O2) of Advanced-LIGO and Advanced-Virgo performed with ANTARES data is presented. In addition to the search for long tracks ind
We report on the search for electromagnetic counterparts to the nine gravitational-wave events with a $>$60% probability of containing a neutron star during the third (O3) LIGO-Virgo Collaboration (LVC) observing run with the All-Sky Automated Survey
The recent discoveries of gravitational wave events and in one case also its electromagnetic (EM) counterpart allow us to study the Universe in a novel way. The increased sensitivity of the LIGO and Virgo detectors has opened the possibility for regu
We report the results of optical follow-up observations of 29 gravitational-wave triggers during the first half of the LIGO-Virgo Collaboration (LVC) O3 run with the Gravitational-wave Optical Transient Observer (GOTO) in its prototype 4-telescope co