ترغب بنشر مسار تعليمي؟ اضغط هنا

Importance of Paramagnetic Background Subtraction for Determining the Magnetic Moment in Epitaxially Grown Monolayer and Few-Layer van der Waals Magnets

137   0   0.0 ( 0 )
 نشر من قبل Roland Kawakami
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Due to the atomically thin nature of monolayer and few-layer van der Waals magnets, the undesired background signal from the substrate can have significant contribution when characterizing their magnetic properties. This brings challenges in accurately determining the magnitude of the magnetic moment of the epitaxially grown van der Waals magnets on bulk substrates. In this paper, we discuss the impact of the background subtraction method for accurately determining the magnetic moments in such systems. Using the recently reported intrinsic two-dimensional (2D) van der Waals ferromagnet MnSe${_2}$ as an example, we show that a normal diamagnetic background subtraction method in analyzing the bulk magnetometry measurement will result in an unexpectedly large magnetic moment (greater than ~10 {mu}${_B}$ per formula unit). Through our systematic growth study, we identify an additional paramagnetic signal due to unintentional Mn doping of the substrate. To extract the correct magnetic moment, a paramagnetic background should also be considered. This yields a total magnetic moment of ~4 {mu}${_B}$ per formula unit in monolayer MnSe${_2}$, which is in close agreement to the theoretically predicted value.



قيم البحث

اقرأ أيضاً

149 - Muhammad Akram , Onur Erten 2020
Magnetic skyrmions in 2D chiral magnets are in general stabilized by a combination of Dzyaloshinskii-Moriya interaction and external magnetic field. Here, we show that skyrmions can also be stabilized in twisted moire superlattices in the absence of an external magnetic field. Our setup consists of a 2D ferromagnetic layer twisted on top of an antiferromagnetic substrate. The coupling between the ferromagnetic layer and the substrate generates an effective alternating exchange field. We find a large region of skyrmion crystal phase when the length scales of the moire periodicity and skyrmions are compatible. Unlike chiral magnets under magnetic field, skyrmions in moire superlattices show enhanced stability for the easy-axis (Ising) anisotropy which can be essential to realize skyrmions since most van der Waals magnets possess easy-axis anisotropy.
The valence band of a variety of few-layer, two-dimensional materials consists of a ring of states in the Brillouin zone. The energy-momentum relation has the form of a `Mexican hat or a Rashba dispersion. The two-dimensional density of states is sin gular at or near the band edge, and the band-edge density of modes turns on nearly abruptly as a step function. The large band-edge density of modes enhances the Seebeck coefficient, the power factor, and the thermoelectric figure of merit ZT. Electronic and thermoelectric properties are determined from ab initio calculations for few-layer III-VI materials GaS, GaSe, InS, InSe, for Bi$_{2}$Se$_{3}$, for monolayer Bi, and for bilayer graphene as a function of vertical field. The effect of interlayer coupling on these properties in few-layer III-VI materials and Bi$_{2}$Se$_{3}$ is described. Analytical models provide insight into the layer dependent trends that are relatively consistent for all of these few-layer materials. Vertically biased bilayer graphene could serve as an experimental test-bed for measuring these effects.
Two-dimensional (2D) ferromagnetic materials have been exhibiting promising potential in applications, such as spintronics devices. To grow epitaxial magnetic films on silicon substrate, in the single-layer limit, is practically important but challen ging. In this study, we realized the epitaxial growth of MnSn monolayer on Si(111) substrate, with an atomically thin Sn/Si(111)-$2sqrt{3}times2sqrt{3}$- buffer layer, and controlled the MnSn thickness with atomic-layer precision. We discovered the ferromagnetism in MnSn monolayer with the Curie temperature (Tc) of ~54 K. As the MnSn film is grown to 4 monolayers, Tc increases accordingly to ~235 K. The lattice of the epitaxial MnSn monolayer as well as the Sn/Si(111)-$2sqrt{3}times2sqrt{3}$ is perfectly compatible with silicon, and thus an sharp interface is formed between MnSn, Sn and Si. This system provides a new platform for exploring the 2D ferromagnetism, integrating magnetic monolayers into silicon-based technology, and engineering the spintronics heterostructures.
Puckered honeycomb Sb monolayer, the structural analog of black phosphorene, has been recently successfully grown by means of molecular beam epitaxy. However, little is known to date about the growth mechanism for such puckered honeycomb monolayer. I n this study, by using scanning tunneling microscopy in combination with first-principles density functional theory calculations, we unveil that the puckered honeycomb Sb monolayer takes a kinetics-limited two-step growth mode. As the coverage of Sb increases, the Sb atoms firstly form the distorted hexagonal lattice as the half layer, and then the distorted hexagonal half-layer transforms into the puckered honeycomb lattice as the full layer. These results provide the atomic-scale insight in understanding the growth mechanism of puckered honeycomb monolayer, and can be instructive to the direct growth of other monolayers with the same structure.
The mechanical properties of magnetic materials are instrumental for the development of the magnetoelastic theory and the optimization of strain-modulated magnetic devices. In particular, two-dimensional (2D) magnets hold promise to enlarge these con cepts into the realm of low-dimensional physics and ultrathin devices. However, no experimental study on the intrinsic mechanical properties of the archetypal 2D magnet family of the chromium trihalides has thus far been performed. Here, we report the room temperature layer-dependent mechanical properties of atomically thin CrI3 and CrCl3, finding that bilayers of CrI3 and CrCl3 have Youngs moduli of 62.1 GPa and 43.4 GPa, with the highest sustained strain of 6.09% and 6.49% and breaking strengths of 3.6 GPa and 2.2 GPa, respectively. Both the elasticity and strength of the two materials decrease with increased thickness, which is attributed to a weak interlayer interaction that enables interlayer sliding under low levels of applied load. The mechanical properties observed in the few-layer chromium trihalide crystals provide evidence of outstanding plasticity in these materials, which is qualitatively demonstrated in their bulk counterparts. This study will contribute to various applications of the van der Waals magnetic materials, especially for their use in magnetostrictive and flexible devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا