ترغب بنشر مسار تعليمي؟ اضغط هنا

Centaurs potentially in retrograde co-orbit resonance with Saturn

228   0   0.0 ( 0 )
 نشر من قبل Yukun Huang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims. 2015 BZ509 is the first asteroid confirmed to be in retrograde co-orbit resonance (or 1/-1 resonance) with the giant planets in the solar system. While Saturn is the only giant planet whose Trojans are not discovered until now, we identify some small bodies among Centaurs and Damocloids that are potentially in 1/-1 resonance with Saturn in the present study. Methods. We integrate numerically the motion of the 1000 clones (include the nominal orbit) of each Centaur whose orbit has a semi-major axis between 9.3 au and 9.8 au and an inclination i > 90 deg. To confirm and evaluate the 1/-1 resonant configurations mentioned above, we introduce a useful one-degree integrable approximation for planar 1/-1 resonance. Results. We identify four candidates potentially in 1/-1 resonance with Saturn. The capture in this particular resonant state during the 40000 yr integration timespan is very common for 2006 RJ2 (906/1000 clones), 2006 BZ8 (878/1000 clones), and 2017 SV13 (998/1000 clones), and it is less likely for 2012 YE8 (426/1000 clones). According to our statistical results, 2006 RJ2 is the best candidate to be currently in a 1/-1 mean motion resonance with Saturn, and 2017 SV13 is another important potential candidate. Moreover, 2012 YE8 and 2006 BZ8 are also Centaurs of interest but their current and long-term 1/-1 resonant state with Saturn is less likely. The proportions of the clones captured in the relative long-term stable co-orbit resonance (over 10000 yr) are also given. Conclusions. Small bodies in retrograde co-orbit resonance with giant planets may be more common than previously expected. Identification of these potential mysterious minor bodies encourages the search for such objects on a larger scale in our solar system. The findings of this paper are also useful for understanding the origin and dynamical evolution of the Centaurs and Damocloids on retrograde orbits.



قيم البحث

اقرأ أيضاً

We present high-precision radial velocity observations of WASP-17 throughout the transit of its close-in giant planet, using the MIKE spectrograph on the 6.5m Magellan Telescope at Las Campanas Observatory. By modeling the Rossiter-McLaughlin effect, we find the sky-projected spin-orbit angle to be lambda = 167.4 pm 11.2 deg. This independently confirms the previous finding that WASP-17b is on a retrograde orbit, suggesting it underwent migration via a mechanism other than just the gravitational interaction between the planet and the disk. Interestingly, our result for lambda differs by 45 pm 13 deg from the previously announced value, and we also find that the spectroscopic transit occurs 15 pm 5 min earlier than expected, based on the published ephemeris. The discrepancy in the ephemeris highlights the need for contemporaneous spectroscopic and photometric transit observations whenever possible.
Constructing dynamical maps from the filtered output of numerical integrations, we analyze the structure of the $ u_odot$ secular resonance for fictitious irregular satellites in retrograde orbits. This commensurability is associated to the secular a ngle $theta = varpi - varpi_odot$, where $varpi$ is the longitude of pericenter of the satellite and $varpi_odot$ corresponds to the (fixed) planetocentric orbit of the Sun. Our study is performed in the restricted three-body problem, where the satellites are considered as massless particles around a massive planet and perturbed by the Sun. Depending on the initial conditions, the resonance presents a diversity of possible resonant modes, including librations of $theta$ around zero (as found for Sinope and Pasiphae) or 180 degrees, as well as asymmetric librations (e.g. Narvi). Symmetric modes are present in all giant planets, although each regime appears restricted to certain values of the satellite inclination. Asymmetric solutions, on the other hand, seem absent around Neptune due to its almost circular heliocentric orbit. Simulating the effects of a smooth orbital migration on the satellite, we find that the resonance lock is preserved as long as the induced change in semimajor axis is much slower compared to the period of the resonant angle (adiabatic limit). However, the librational mode may vary during the process, switching between symmetric and asymmetric oscillations. Finally, we present a simple scaling transformation that allows to estimate the resonant structure around any giant planet from the results calculated around a single primary mass.
Previous studies have shown that planets that rotate retrograde (backwards with respect to their orbital motion) generally experience less severe obliquity variations than those that rotate prograde (the same direction as their orbital motion). Here we examine retrograde-rotating planets on eccentric orbits and find a previously unknown secular spin-orbit resonance that can drive significant obliquity variations. This resonance occurs when the frequency of the planets rotation axis precession becomes commensurate with an orbital eigenfrequency of the planetary system. The planets eccentricity enables a participating orbital frequency through an interaction in which the apsidal precession of the planets orbit causes a cyclic nutation of the planets orbital angular momentum vector. The resulting orbital frequency follows the relationship $f = 2 dot{varpi} - dot{Omega}$, where $dot{varpi}$ and $dot{Omega}$ are the rates of the planets changing longitude of periapsis and ascending node, respectively. We test this mechanism by simulating cases of a simple Earth-Jupiter system, and confirm the predicted resonance. Over the course of 100 Myr, the test Earths with rotation axis precession rates near the predicted resonant frequency experienced pronounced obliquity variations of order $10^circ$-$30^circ$. These variations can be significant, and suggest that while retrograde rotation is a stabilizing influence most of the time, retrograde rotators can experience large obliquity variations if they are on eccentric orbits and enter this spin-orbit resonance.
244 - Yukun Huang , Miao Li , Junfeng Li 2019
We find an interesting fact that fictitious retrograde co-orbitals of Saturn, or small bodies inside the retrograde 1:1 resonance with Saturn, are highly unstable in our numerical simulations. It is shown that in the presence of Jupiter, the retrogra de co-orbitals will get ejected from Saturns co-orbital space within a timescale of 10 Myr. This scenario reminds us of the instability of Saturn Trojans caused by both the Great Inequality and the secular resonances. Therefore, we carry out in-depth inspections on both mechanisms and prove that the retrograde resonance overlap, raised by Great Inequality, cannot serve as an explanation for the instability of retrograde co-orbitals, due to the weakness of the retrograde 2:5 resonance with Jupiter at a low eccentricity. However, we discover that both $ u_5$ and $ u_6$ secular resonances contribute to the slow growth of the eccentricity, therefore, are possibly the primary causes of the instability inside Saturns retrograde co-orbital space.
Asteroids in mean motion resonances with giant planets are common in the solar system, but it was not until recently that several asteroids in retrograde mean motion resonances with Jupiter and Saturn were discovered. A retrograde co-orbital asteroid of Jupiter, 2015 BZ509 is confirmed to be in a long-term stable retrograde 1:1 mean motion resonance with Jupiter, which gives rise to our interests in its unique resonant dynamics. In this paper, we investigate the phase-space structure of the retrograde 1:1 resonance in detail within the framework of the circular restricted three-body problem. We construct a simple integrable approximation for the planar retrograde resonance using canonical contact transformation and numerically employ the averaging procedure in closed form. The phase portrait of the retrograde 1:1 resonance is depicted with the level curves of the averaged Hamiltonian. We thoroughly analyze all possible librations in the co-orbital region and uncover a new apocentric libration for the retrograde 1:1 resonance inside the planets orbit. We also observe the significant jumps in orbital elements for outer and inner apocentric librations, which are caused by close encounters with the perturber.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا