ﻻ يوجد ملخص باللغة العربية
The multi-level hp-refinement scheme is a powerful extension of the finite element method that allows local mesh adaptation without the trouble of constraining hanging nodes. This is achieved through hierarchical high-order overlay meshes, a hp-scheme based on spatial refinement by superposition. An efficient parallelization of this method using standard domain decomposition approaches in combination with ghost elements faces the challenge of a large basis function support resulting from the overlay structure and is in many cases not feasible. In this contribution, a parallelization strategy for the multi-level hp-scheme is presented that is adapted to the schemes simple hierarchical structure. By distributing the computational domain among processes on the granularity of the active leaf elements and utilizing shared mesh data structures, good parallel performance is achieved, as redundant computations on ghost elements are avoided. We show the schemes parallel scalability for problems with a few hundred elements per process. Furthermore, the scheme is used in conjunction with the finite cell method to perform numerical simulations on domains of complex shape.
The aggregated unfitted finite element method (AgFEM) is a methodology recently introduced in order to address conditioning and stability problems associated with embedded, unfitted, or extended finite element methods. The method is based on removal
Graphics Processing Unit (GPU) computing is becoming an alternate computing platform for numerical simulations. However, it is not clear which numerical scheme will provide the highest computational efficiency for different types of problems. To this
A mixed finite element method combining an iso-parametric $Q_2$-$P_1$ element and an iso-parametric $P_2^+$-$P_1$ element is developed for the computation of multiple cavities in incompressible nonlinear elasticity. The method is analytically proved
We present our experience with the modernization on the GR-MHD code BHAC, aimed at improving its novel hybrid (MPI+OpenMP) parallelization scheme. In doing so, we showcase the use of performance profiling tools usable on x86 (Intel-based) architectur
We present a new technique for transferring momentum and velocity between particles and grid with Particle-In-Cell (PIC) calculations which we call Affine-Particle-In-Cell (APIC). APIC represents particle velocities as locally affine, rather than loc