ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing charm quark thermalisation within the Statistical Hadronisation Model

77   0   0.0 ( 0 )
 نشر من قبل Markus K. Koehler
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A wealth of data on charmonium production in Pb-Pb collisions from the LHC experiments has provided strong evidence for (re-)generation as a dominant production mechanism at low transverse momentum. We present an important extension of the statistical hadronisation model to describe $rm{J}/psi$ transverse momentum distributions based on input parameters from hydrodynamical simulations. Comparison to the data allows the testing of the degree of thermalisation of charm quarks in the quark-gluon plasma. To this end we will report analyses of the $rm{J}/psi$ transverse momentum spectra in Pb-Pb collisions at $sqrt{s_{rm NN}} = 2.76$ and $5.02$ TeV.

قيم البحث

اقرأ أيضاً

We study charm production in ultra-relativistic heavy-ion collisions by using the Parton-Hadron-String Dynamics (PHSD) transport approach. The initial charm quarks are produced by the Pythia event generator tuned to fit the transverse momentum spectr um and rapidity distribution of charm quarks from Fixed-Order Next-to-Leading Logarithm (FONLL) calculations. The produced charm quarks scatter in the quark-gluon plasma (QGP) with the off-shell partons whose masses and widths are given by the Dynamical Quasi-Particle Model (DQPM) which reproduces the lattice QCD equation-of-state in thermal equilibrium. The relevant cross section are calculated in a consistent way by employing the effective propagators and couplings from the DQPM. Close to the critical energy density of the phase transition, the charm quarks are hadronized into $D$ mesons through coalescence and/or fragmentation depending on transverse momentum. The hadronized $D$ mesons then interact with the various hadrons in the hadronic phase with cross sections calculated in an effective lagrangian approach with heavy-quark spin symmetry. Finally, the nuclear modification factor $rm R_{AA}$ and the elliptic flow $v_2$ of $D^0$ mesons from PHSD are compared with the experimental data from the STAR Collaboration for Au+Au collisions at $sqrt{s_{rm NN}}$ =200 GeV. We find that in the PHSD the energy loss of $D$ mesons at high $p_T$ can be dominantly attributed to partonic scattering while the actual shape of $rm R_{AA}$ versus $p_T$ reflects the heavy quark hadronization scenario, i.e. coalescence versus fragmentation. Also the hadronic rescattering is important for the $rm R_{AA}$ at low $p_T$ and enhances the $D$-meson elliptic flow $v_2$.
We have calculated the Bjorken-x dependence of the kaon and pion valence quark distributions in a statistical model. Each meson is described by a Fock state expansion in terms of quarks, antiquarks and gluons. Although Drell-Yan experiments have meas ured the pion valence quark distributions directly, the kaon valence quark distributions have only been deduced from the measurement of the ratio $bar{u}_K(x)/bar{u}_pi(x)$. We show that, using no free parameters, our model predicts the decrease of this ratio with increasing x.
257 - M. Artuso 2005
The charm quark has unique properties that make it a very important probe of many facets of the Standard Model. New experimental information on charm decays is becoming available from dedicated experiments at charm factories, and through charm physic s programs at the b-factories and hadron machines. In parallel, theorists are working on matrix element calculations based on unquenched lattice QCD, that can be validated by experimental measurements and affect our ultimate knowledge of the quark mixing parameters. Recent predictions are compared with corresponding experimental data and good agreement is found. Charm decays can also provide unique new physics signatures; the status of present searches is reviewed. Finally, charm data relevant for improving beauty decay measurements are presented.
On the basis of morphological thermodynamics we develop an exactly solvable version of statistical mutifragmentation model for the nuclear liquid-gas phase transition. It is shown that the hard-core repulsion between spherical nuclei generates only t he bulk (volume), surface and curvature parts of the free energy of the nucleus, while the Gaussian curvature one does not appear in the derivation. The phase diagram of nuclear liquid-gas phase transition is studied for a truncated version of the developed model.
88 - Zhong-Dao Lu 2001
The experimental data on hadron yields and ratios in central lead-lead and gold-gold collisions at 158 AGeV/$c$ (SPS) and $sqrt{s} = 130$ AGeV (RHIC), respectively, are analysed within a two-source statistical model of an ideal hadron gas. A comparis on with the standard thermal model is given. The two sources, which can reach the chemical and thermal equilibrium separately and may have different temperatures, particle and strangeness densities, and other thermodynamic characteristics, represent the expanding system of colliding heavy ions, where the hot central fireball is embedded in a larger but cooler fireball. The volume of the central source increases with rising bombarding energy. Results of the two-source model fit to RHIC experimental data at midrapidity coincide with the results of the one-source thermal model fit, indicating the formation of an extended fireball, which is three times larger than the corresponding core at SPS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا