ترغب بنشر مسار تعليمي؟ اضغط هنا

The inverse xgamma distribution: statistical properties and different methods of estimation

125   0   0.0 ( 0 )
 نشر من قبل Mahendra Saha
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposed a new probability distribution named as inverse xgamma distribution (IXGD). Different mathematical and statistical properties,viz., reliability characteristics, moments, inverse moments, stochastic ordering and order statistics of the proposed distribution have been derived and discussed. The estimation of the parameter of IXGD has been approached by different methods of estimation, namely, maximum likelihood method of estimation (MLE), Least square method of estimation (LSE), Weighted least square method of estimation (WLSE), Cramer-von-Mises method of estimation (CME) and maximum product spacing method of estimation (MPSE). Asymptotic confidence interval (ACI) of the parameter is also obtained. A simulation study has been carried out to compare the performance of the obtained estimators and corresponding ACI in terms of average widths and corresponding coverage probabilities. Finally, two real data sets have been used to demonstrate the applicability of IXGD in real life situations.



قيم البحث

اقرأ أيضاً

In this article, a generalized inverse xgamma distribution (GIXGD) has been introduced as the generalized version of the inverse xgamma distribution. The proposed model exhibits the pattern of non-monotone hazard rate and belongs to family of positiv ely skewed models. The explicit expressions of some distributional properties, such as, moments, inverse moments, conditional moments, mean deviation, quantile function have been derived. The maximum likelihood estimation procedure has been used to estimate the unknown model parameters as well as survival characteristics of GIXGD. The practical applicability of the proposed model has been illustrated through a survival data of guinea pigs.
136 - Yifan Cui , Min-ge Xie 2021
This paper introduces to readers the new concept and methodology of confidence distribution and the modern-day distributional inference in statistics. This discussion should be of interest to people who would like to go into the depth of the statisti cal inference methodology and to utilize distribution estimators in practice. We also include in the discussion the topic of generalized fiducial inference, a special type of modern distributional inference, and relate it to the concept of confidence distribution. Several real data examples are also provided for practitioners. We hope that the selected content covers the greater part of the developments on this subject.
Parameter estimation in multidimensional diffusion models with only one coordinate observed is highly relevant in many biological applications, but a statistically difficult problem. In neuroscience, the membrane potential evolution in single neurons can be measured at high frequency, but biophysical realistic models have to include the unobserved dynamics of ion channels. One such model is the stochastic Morris-Lecar model, defined by a nonlinear two-dimensional stochastic differential equation. The coordinates are coupled, that is, the unobserved coordinate is nonautonomous, the model exhibits oscillations to mimic the spiking behavior, which means it is not of gradient-type, and the measurement noise from intracellular recordings is typically negligible. Therefore, the hidden Markov model framework is degenerate, and available methods break down. The main contributions of this paper are an approach to estimate in this ill-posed situation and nonasymptotic convergence results for the method. Specifically, we propose a sequential Monte Carlo particle filter algorithm to impute the unobserved coordinate, and then estimate parameters maximizing a pseudo-likelihood through a stochastic version of the Expectation-Maximization algorithm. It turns out that even the rate scaling parameter governing the opening and closing of ion channels of the unobserved coordinate can be reasonably estimated. An experimental data set of intracellular recordings of the membrane potential of a spinal motoneuron of a red-eared turtle is analyzed, and the performance is further evaluated in a simulation study.
This article aims to introduced a new distribution named as extended xgamma (EXg) distribution. This generalization is derived from xgamma distribution (Xg), a special finite mixture of exponential and gamma distributions [see, Sen et al. ($2016$)]. Some important statistical properties, viz., survival characteristics, moments, mean deviation and random number generation have been derived. Further, maximum likelihood estimation for the estimation of the unknown parameters have also been discussed for the complete sample. The application of the proposed model has been illustrated through a real data set and observed that the proposed model might be taken as an better alternative to some well known lifetime distributions.
In this article, we proposed a new probability distribution named as power Maxwell distribution (PMaD). It is another extension of Maxwell distribution (MaD) which would lead more flexibility to analyze the data with non-monotone failure rate. Differ ent statistical properties such as reliability characteristics, moments, quantiles, mean deviation, generating function, conditional moments, stochastic ordering, residual lifetime function and various entropy measures have been derived. The estimation of the parameters for the proposed probability distribution has been addressed by maximum likelihood estimation method and Bayes estimation method. The Bayes estimates are obtained under gamma prior using squared error loss function. Lastly, real-life application for the proposed distribution has been illustrated through different lifetime data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا