ﻻ يوجد ملخص باللغة العربية
In a quantum Hall system, the finite-wavevector Hall conductivity displays an intriguing dependence on the Hall viscosity, a coefficient that describes the non-dissipative response of the fluid to a velocity gradient. In this paper, we pursue this connection in detail for quantum Hall systems on a lattice, noting that the neat continuum relation breaks down and develops corrections due to the broken rotational symmetry. In the process, we introduce a new, quantum mechanical derivation of the finite-wavevector Hall conductivity for the integer quantum Hall effect, which allows terms to arbitrary order in the wavevector expansion to be calculated straightforwardly. We also develop a universal formalism for studying quantum Hall physics on a lattice, and find that at weak applied magnetic fields, generic lattice wavefunctions connect smoothly to the Landau levels of the continuum. At moderate field strengths, the lattice corrections can be significant and perturb the wavefunctions, energy levels, and transport properties from their continuum values. Our approach allows the finite-field behaviour of a system to be inferred directly from the zero-field band structure.
Two-dimensional semiconductor quantum dots are studied in the the filling-factor range 2<v<3. We find both theoretical and experimental evidence of a collective many-body phenomenon, where a fraction of the trapped electrons form an incompressible sp
Parafermions are non-Abelian anyons which generalize Majorana fermions and hold great promise for topological quantum computation. We study the braiding of $mathbb{Z}_{2n}$ parafermions which have been predicted to emerge as bound states in fractiona
We study the bilayer quantum Hall system at total filling factor u_T = 1 within a bosonization formalism which allows us to approximately treat the magnetic exciton as a boson. We show that in the region where the distance between the two layers is
For the fractional quantum Hall states on a finite disc, we study the thermoelectric transport properties under the influence of an edge and its reconstruction. In a recent study on a torus [Phys. Rev. B 101, 241101 (2020)], Sheng and Fu found a univ
The entanglement entropy of the $ u = 1/3$ and $ u = 5/2$ quantum Hall states in the presence of short range random disorder has been calculated by direct diagonalization. A microscopic model of electron-electron interaction is used, electrons are co