ترغب بنشر مسار تعليمي؟ اضغط هنا

Model-based Hand Pose Estimation for Generalized Hand Shape with Appearance Normalization

90   0   0.0 ( 0 )
 نشر من قبل Shile Li
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Since the emergence of large annotated datasets, state-of-the-art hand pose estimation methods have been mostly based on discriminative learning. Recently, a hybrid approach has embedded a kinematic layer into the deep learning structure in such a way that the pose estimates obey the physical constraints of human hand kinematics. However, the existing approach relies on a single persons hand shape parameters, which are fixed constants. Therefore, the existing hybrid method has problems to generalize to new, unseen hands. In this work, we extend the kinematic layer to make the hand shape parameters learnable. In this way, the learnt network can generalize towards arbitrary hand shapes. Furthermore, inspired by the idea of Spatial Transformer Networks, we apply a cascade of appearance normalization networks to decrease the variance in the input data. The input images are shifted, rotated, and globally scaled to a similar appearance. The effectiveness and limitations of our proposed approach are extensively evaluated on the Hands 2017 challenge dataset and the NYU dataset.

قيم البحث

اقرأ أيضاً

3D hand pose estimation based on RGB images has been studied for a long time. Most of the studies, however, have performed frame-by-frame estimation based on independent static images. In this paper, we attempt to not only consider the appearance of a hand but incorporate the temporal movement information of a hand in motion into the learning framework for better 3D hand pose estimation performance, which leads to the necessity of a large scale dataset with sequential RGB hand images. We propose a novel method that generates a synthetic dataset that mimics natural human hand movements by re-engineering annotations of an extant static hand pose dataset into pose-flows. With the generated dataset, we train a newly proposed recurrent framework, exploiting visuo-temporal features from sequential images of synthetic hands in motion and emphasizing temporal smoothness of estimations with a temporal consistency constraint. Our novel training strategy of detaching the recurrent layer of the framework during domain finetuning from synthetic to real allows preservation of the visuo-temporal features learned from sequential synthetic hand images. Hand poses that are sequentially estimated consequently produce natural and smooth hand movements which lead to more robust estimations. We show that utilizing temporal information for 3D hand pose estimation significantly enhances general pose estimations by outperforming state-of-the-art methods in experiments on hand pose estimation benchmarks.
We propose an approach to estimating the 3D pose of a hand, possibly handling an object, given a depth image. We show that we can correct the mistakes made by a Convolutional Neural Network trained to predict an estimate of the 3D pose by using a fee dback loop. The components of this feedback loop are also Deep Networks, optimized using training data. This approach can be generalized to a hand interacting with an object. Therefore, we jointly estimate the 3D pose of the hand and the 3D pose of the object. Our approach performs en-par with state-of-the-art methods for 3D hand pose estimation, and outperforms state-of-the-art methods for joint hand-object pose estimation when using depth images only. Also, our approach is efficient as our implementation runs in real-time on a single GPU.
Hand-object pose estimation (HOPE) aims to jointly detect the poses of both a hand and of a held object. In this paper, we propose a lightweight model called HOPE-Net which jointly estimates hand and object pose in 2D and 3D in real-time. Our network uses a cascade of two adaptive graph convolutional neural networks, one to estimate 2D coordinates of the hand joints and object corners, followed by another to convert 2D coordinates to 3D. Our experiments show that through end-to-end training of the full network, we achieve better accuracy for both the 2D and 3D coordinate estimation problems. The proposed 2D to 3D graph convolution-based model could be applied to other 3D landmark detection problems, where it is possible to first predict the 2D keypoints and then transform them to 3D.
3D hand shape and pose estimation from a single depth map is a new and challenging computer vision problem with many applications. Existing methods addressing it directly regress hand meshes via 2D convolutional neural networks, which leads to artifa cts due to perspective distortions in the images. To address the limitations of the existing methods, we develop HandVoxNet++, i.e., a voxel-based deep network with 3D and graph convolutions trained in a fully supervised manner. The input to our network is a 3D voxelized-depth-map-based on the truncated signed distance function (TSDF). HandVoxNet++ relies on two hand shape representations. The first one is the 3D voxelized grid of hand shape, which does not preserve the mesh topology and which is the most accurate representation. The second representation is the hand surface that preserves the mesh topology. We combine the advantages of both representations by aligning the hand surface to the voxelized hand shape either with a new neural Graph-Convolutions-based Mesh Registration (GCN-MeshReg) or classical segment-wise Non-Rigid Gravitational Approach (NRGA++) which does not rely on training data. In extensive evaluations on three public benchmarks, i.e., SynHand5M, depth-based HANDS19 challenge and HO-3D, the proposed HandVoxNet++ achieves the state-of-the-art performance. In this journal extension of our previous approach presented at CVPR 2020, we gain 41.09% and 13.7% higher shape alignment accuracy on SynHand5M and HANDS19 datasets, respectively. Our method is ranked first on the HANDS19 challenge dataset (Task 1: Depth-Based 3D Hand Pose Estimation) at the moment of the submission of our results to the portal in August 2020.
Hand pose estimation from the monocular 2D image is challenging due to the variation in lighting, appearance, and background. While some success has been achieved using deep neural networks, they typically require collecting a large dataset that adeq uately samples all the axes of variation of hand images. It would, therefore, be useful to find a representation of hand pose which is independent of the image appearance~(like hand texture, lighting, background), so that we can synthesize unseen images by mixing pose-appearance combinations. In this paper, we present a novel technique that disentangles the representation of pose from a complementary appearance factor in 2D monochrome images. We supervise this disentanglement process using a network that learns to generate images of hand using specified pose+appearance features. Unlike previous work, we do not require image pairs with a matching pose; instead, we use the pose annotations already available and introduce a novel use of cycle consistency to ensure orthogonality between the factors. Experimental results show that our self-disentanglement scheme successfully decomposes the hand image into the pose and its complementary appearance features of comparable quality as the method using paired data. Additionally, training the model with extra synthesized images with unseen hand-appearance combinations by re-mixing pose and appearance factors from different images can improve the 2D pose estimation performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا