ترغب بنشر مسار تعليمي؟ اضغط هنا

Pair-based Analytical model for Segmented Telescopes Imaging from Space (PASTIS) for sensitivity analysis

224   0   0.0 ( 0 )
 نشر من قبل Lucie Leboulleux
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The imaging and spectroscopy of habitable worlds will require large-aperture space-based telescopes, to increase the collecting area and the angular resolution. These large telescopes will necessarily use segmented primaries to fit in a rocket. However, these massively segmented mirrors make high-contrast performance very difficult to achieve and stabilize, compared to more common monolithic primaries. Despite space telescopes operating in a friendlier environment than ground-based telescopes, remaining vibrations and resonant modes on the segments can still deteriorate the performance. In this context, we present the Pair-based Analytical model for Segmented Telescopes Imaging from Space (PASTIS) that enables the establishment of a comprehensive error budget, both in term of segment alignment and stability. Using this model, one may evaluate the influence of the segment cophasing and surface quality evolution on the final images and contrasts, and set up requirements for any given mission. One can also identify the dominant modes of a given geometry for a given coronagraphic instrument and design the feedback control systems accordingly. In this paper, we first develop and validate this analytical model by comparing its outputs to the images and contrasts predicted by an end-to-end simulation. We show that the contrasts predicted using PASTIS are accurate enough compared to the end-to-end propagation results, at the exo-Earth detection level. Second, we develop a method for a fast and efficient error budget in term of segment manufacturing and alignment that takes into account the disparities of the segment effects on the final performance. This technique is then applied on a specific aperture to provide static and quasi-static requirements on each segment for local aberrations. Finally we discuss potential application of this new technique to future missions.



قيم البحث

اقرأ أيضاً

A coronagraphic starlight suppression system situated on a future flagship space observatory offers a promising avenue to image Earth-like exoplanets and search for biomarkers in their atmospheric spectra. One NASA mission concept that could serve as the platform to realize this scientific breakthrough is the Large UV/Optical/IR Surveyor (LUVOIR). Such a mission would also address a broad range of topics in astrophysics with a multiwavelength suite of instruments. The apodized pupil Lyot coronagraph (APLC) is one of several coronagraph design families that the community is assessing as part of NASAs Exoplanet Exploration Program Segmented aperture coronagraph design and analysis (SCDA) team. The APLC is a Lyot-style coronagraph that suppresses starlight through a series of amplitude operations on the on-axis field. Given a suite of seven plausible segmented telescope apertures, we have developed an object-oriented software toolkit to automate the exploration of thousands of APLC design parameter combinations. This has enabled us to empirically establish relationships between planet throughput and telescope aperture geometry, inner working angle, bandwidth, and contrast level. In parallel with the parameter space exploration, we have investigated several strategies to improve the robustness of APLC designs to fabrication and alignment errors. We also investigate the combination of APLC with wavefront control or complex focal plane masks to improve inner working angle and throughput. Preliminary scientific yield evaluations based on design reference mission simulations indicate the APLC is a very competitive concept for surveying the local exoEarth population with a mission like LUVOIR.
This paper introduces an analytical method to calculate segment-level wavefront error tolerances in order to enable the detection of faint extra-solar planets using segmented telescopes in space. This study provides a full treatment of spatially unco rrelated segment phasing errors for segmented telescope coronagraphy, which has so far only been approached using ad hoc Monte-Carlo simulations. Instead of describing the wavefront tolerance globally for all segments, our method produces spatially dependent requirements. We relate the statistical mean contrast in the coronagraph dark hole to the standard deviation of the wavefront error of each individual segment on the primary mirror. This statistical framework for segment-level tolerancing extends the Pair-based Analytical model for Segmented Telescope Imaging from Space (PASTIS), which is based uniquely on a matrix multiplication for the optical propagation. We confirm our analytical results with Monte-Carlo simulations of E2E optical propagations through a coronagraph. Comparing our results for the Apodized Pupil Lyot Coronagraph designs for the Large UltraViolet Optical InfraRed (LUVOIR) telescope to previous studies, we show general agreement but provide a relaxation of the requirements for a significant subset of segments. These requirement maps are unique to any given telescope geometry and coronagraph design. The spatially uncorrelated segment tolerances we calculate are a key element of a complete error budget that will also need to include allocations for correlated segment contributions. We discuss how the PASTIS formalism can be extended to the spatially correlated case by deriving the statistical mean contrast and its variance for a non-diagonal aberration covariance matrix. The PASTIS tolerancing framework therefore brings a new capability that is necessary for the global tolerancing of future segmented space observatories.
Direct imaging of Earth-like planets from space requires dedicated observatories, combining large segmented apertures with instruments and techniques such as coronagraphs, wavefront sensors, and wavefront control in order to reach the high contrast o f 10^10 that is required. The complexity of these systems would be increased by the segmentation of the primary mirror, which allows for the larger diameters necessary to image Earth-like planets but also introduces specific patterns in the image due to the pupil shape and segmentation and making high-contrast imaging more challenging. Among these defects, the phasing errors of the primary mirror are a strong limitation to the performance. In this paper, we focus on the wavefront sensing of segment phasing errors for a high-contrast system, using the COronagraphic Focal plane wave-Front Estimation for Exoplanet detection (COFFEE) technique. We implemented and tested COFFEE on the High-contrast imaging for Complex Aperture Telescopes (HiCAT) testbed, in a configuration without any coronagraph and with a classical Lyot coronagraph, to reconstruct errors applied on a 37 segment mirror. We analysed the quality and limitations of the reconstructions. We demonstrate that COFFEE is able to estimate correctly the phasing errors of a segmented telescope for piston, tip, and tilt aberrations of typically 100nm RMS. We also identified the limitations of COFFEE for the reconstruction of low-order wavefront modes, which are highly filtered by the coronagraph. This is illustrated using two focal plane mask sizes on HiCAT. We discuss possible solutions, both in the hardware system and in the COFFEE optimizer, to mitigate these issues.
Precision wavefront control on future segmented-aperture space telescopes presents significant challenges, particularly in the context of high-contrast exoplanet direct imaging. We present a new wavefront control architecture that translates the grou nd-based artificial guide star concept to space with a laser source aboard a second spacecraft, formation flying within the telescope field-of-view. We describe the motivating problem of mirror segment motion and develop wavefront sensing requirements as a function of guide star magnitude and segment motion power spectrum. Several sample cases with different values for transmitter power, pointing jitter, and wavelength are presented to illustrate the advantages and challenges of having a non-stellar-magnitude noise limited wavefront sensor for space telescopes. These notional designs allow increased control authority, potentially relaxing spacecraft stability requirements by two orders of magnitude, and increasing terrestrial exoplanet discovery space by allowing high-contrast observations of stars of arbitrary brightness.
The High Contrast spectroscopy testbed for Segmented Telescopes (HCST) is being developed at Caltech. It aims at addressing the technology gap for future exoplanet imagers and providing the U.S. community with an academic facility to test components and techniques for high contrast imaging, focusing on segmented apertures proposed for future ground-based (TMT, ELT) and space-based telescopes (HabEx, LUVOIR). We present an overview of the design of the instrument and a detailed look at the testbed build and initial alignment. We offer insights into stumbling blocks encountered along the path and show that the testbed is now operational and open for business. We aim to use the testbed in the future for testing of high contrast imaging techniques and technologies with amongst with thing, a TMT-like pupil.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا