ﻻ يوجد ملخص باللغة العربية
We demonstrate how hybridization between a two-dimensional material and its substrate can lead to an apparent heavy doping, using the example of monolayer TaS$_2$ grown on Au(111). Combining $textit{ab-initio}$ calculations, scanning tunneling spectroscopy experiments and a generic model, we show that strong changes in Fermi areas can arise with much smaller actual charge transfer. This mechanism, which we refer to as pseudodoping, is a generic effect for metallic two-dimensional materials which are either adsorbed to metallic substrates or embedded in vertical heterostructures. It explains the apparent heavy doping of TaS$_2$ on Au(111) observed in photoemission spectroscopy and spectroscopic signatures in scanning tunneling spectroscopy. Pseudodoping is associated with non-linear energy-dependent shifts of electronic spectra, which our scanning tunneling spectroscopy experiments reveal for clean and defective TaS$_2$ monolayer on Au(111). The influence of pseudodoping on the formation of charge ordered, magnetic, or superconducting states is analyzed.
We demonstrate how weak hybridization can lead to apparent heavy doping of 2d materials even in case of physisorptive binding. Combining ab-intio calculations and a generic model we show that strong reshaping of Fermi surfaces and changes in Fermi vo
Two-dimensional (2D) topological materials (TMs) have attracted tremendous attention due to the promise of revolutionary devices with non-dissipative electric or spin currents. Unfortunately, the scarcity of 2D TMs holds back the experimental realiza
Extreme confinement of electromagnetic energy by phonon polaritons holds the promise of strong and new forms of control over the dynamics of matter. To bring such control to the atomic-scale limit, it is important to consider phonon polaritons in two
We propose an optical method of shining circularly polarized and spatially periodic laser fields to imprint superlattice structures in two-dimensional electronic systems. By changing the configuration of the optical field, we synthesize various latti
We propose a robust and efficient way of controlling the optical spectra of two-dimensional materials and van der Waals heterostructures by quantum cavity embedding. The cavity light-matter coupling leads to the formation of exciton-polaritons, a sup