ترغب بنشر مسار تعليمي؟ اضغط هنا

A Fixed-Target Programme at the LHC: Physics Case and Projected Performances for Heavy-Ion, Hadron, Spin and Astroparticle Studies

61   0   0.0 ( 0 )
 نشر من قبل Jean-Philippe Lansberg
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We review the context, the motivations and the expected performances of a comprehensive and ambitious fixed-target program using the multi-TeV proton and ion LHC beams. We also provide a detailed account of the different possible technical implementations ranging from an internal wire target to a full dedicated beam line extracted with a bent crystal. The possibilities offered by the use of the ALICE and LHCb detectors in the fixed-target mode are also reviewed.

قيم البحث

اقرأ أيضاً

Thanks to its multi-TeV LHC proton and lead beams, the LHC complex allows one to perform the most energetic fixed-target experiments ever and to study with high precision pp, pd and pA collisions at sqrt(s_NN) = 115 GeV and Pbp and PbA collisions at sqrt(s_NN) = 72 GeV. We present a selection of feasibility studies for the production of quarkonia, open heavy-flavor mesons as well as light-flavor hadrons in pA and PbA collisions using the LHCb and ALICE detectors in a fixed-target mode.
We report on the opportunities for spin physics and Transverse-Momentum Dependent distribution (TMD) studies at a future multi-purpose fixed-target experiment using the proton or lead ion LHC beams extracted by a bent crystal. The LHC multi-TeV beams allow for the most energetic fixed-target experiments ever performed, opening new domains of particle and nuclear physics and complementing that of collider physics, in particular that of RHIC and the EIC projects. The luminosity achievable with AFTER@LHC using typical targets would surpass that of RHIC by more that 3 orders of magnitude in a similar energy region. In unpolarised proton-proton collisions, AFTER@LHC allows for measurements of TMDs such as the Boer-Mulders quark distributions, the distribution of unpolarised and linearly polarised gluons in unpolarised protons. Using the polarisation of hydrogen and nuclear targets, one can measure transverse single-spin asymmetries of quark and gluon sensitive probes, such as, respectively, Drell-Yan pair and quarkonium production. The fixed-target mode has the advantage to allow for measurements in the target-rapidity region, namely at large x^uparrow in the polarised nucleon. Overall, this allows for an ambitious spin program which we outline here.
We outline the opportunities for spin physics which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton LHC beam extracted by a bent crystal. In particular, we focus on the study of single transverse spin asymetries with the polarisation of the target.
We report on the spin and diffractive physics at a future multi-purpose fixed-target experiment with proton and lead LHC beams extracted by a bent crystal. The LHC multi-TeV beams allow for the most energetic fixed-target experiments ever performed, opening new domains of particle and nuclear physics and complementing that of collider physics, in particular that of RHIC and the EIC projects. The luminosity achievable with AFTER using typical targets would surpass that of RHIC by more than 3 orders of magnitude. The fixed-target mode has the advantage to allow for measurements of single-spin asymmetries with polarized target as well as of single-diffractive processes in the target region.
We argue that the concept of a multi-purpose fixed-target experiment with the proton or lead-ion LHC beams extracted by a bent crystal would offer a number of ground-breaking precision-physics opportunities. The multi-TeV LHC beams will allow for the most energetic fixed-target experiments ever performed. The fixed-target mode has the advantage of allowing for high luminosities, spin measurements with a polarised target, and access over the full backward rapidity domain --uncharted until now-- up to x_F ~ -1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا