ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum critical phenomena of the excitonic insulating transition in two dimensions

128   0   0.0 ( 0 )
 نشر من قبل Guo-Zhu Liu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the quantum criticality of the phase transition between the Dirac semimetal and the excitonic insulator in two dimensions. Even though the system has a semimetallic ground state, there are observable effects of excitonic pairing at finite temperatures and/or finite energies, provided that the system is in proximity to the excitonic insulating transition. To determine the quantum critical behavior, we consider three potentially important interactions, including the Yukawa coupling between Dirac fermions and the excitonic order parameter fluctuation, the long-range Coulomb interaction, and the disorder scattering. We employ the renormalization group technique to study how these interactions affect quantum criticality and also how they influence each other. We first investigate the Yukawa coupling in the clean limit, and show that it gives rise to typical non-Fermi liquid behavior. Adding random scalar potential to the system always turns such a non-Fermi liquid into a compressible diffusive metal. In comparison, the non-Fermi liquid behavior is further enhanced by random vector potential, but is nearly unaffected by random mass. Incorporating the Coulomb interaction may change the results qualitatively. In particular, the non-Fermi liquid state is protected by the Coulomb interaction for weak random scalar potential, and it becomes a diffusive metal only when random scalar potential becomes sufficiently strong. When random vector potential or random mass coexists with Yukawa coupling and Coulomb interaction, the system is a stable non-Fermi liquid state, with fermion velocities flowing to constants in the former case and being singularly renormalized in the latter case. These quantum critical phenomena can be probed by measuring observable quantities.



قيم البحث

اقرأ أيضاً

Two-dimensional Dirac fermions are subjected to two types of interactions, namely the long-range Coulomb interaction and the short-range on-site interaction. The former induces excitonic pairing if its strength $alpha$ is larger than some critical va lue $alpha_c$, whereas the latter drives an antiferromagnetic Mott transition when its strength $U$ exceeds a threshold $U_c$. Here, we study the impacts of the interplay of these two interactions on excitonic pairing with the Dyson-Schwinger equation approach. We find that the critical value $alpha_c$ is increased by weak short-range interaction. As $U$ increases to approach $U_c$, the quantum fluctuation of antiferromagnetic order parameter becomes important and interacts with the Dirac fermions via the Yukawa coupling. After treating the Coulomb interaction and Yukawa coupling interaction on an equal footing, we show that $alpha_c$ is substantially increased as $U rightarrow U_c$. Thus, the excitonic pairing is strongly suppressed near the antiferromagnetic quantum critical point. We obtain a global phase diagram on the $U$-$alpha$ plane, and illustrate that the excitonic insulating and antiferromagnetic phases are separated by an intermediate semimetal phase. These results provide a possible explanation of the discrepancy between recent theoretical progress on excitonic gap generation and existing experiments in suspended graphene.
We study the temperature dependence of the conductivity due to quantum interference processes for a two-dimensional disordered itinerant electron system close to a ferromagnetic quantum critical point. Near the quantum critical point, the cross-over between diffusive and ballistic regimes of quantum interference effects occurs at a temperature $ T^{ast}=1/tau gamma (E_{F}tau)^{2}$, where $gamma $ is the parameter associated with the Landau damping of the spin fluctuations, $tau $ is the impurity scattering time, and $E_{F}$ is the Fermi energy. For a generic choice of parameters, $T^{ast}$ is smaller than the nominal crossover scale $1/tau $. In the ballistic quantum critical regime, the conductivity behaves as $T^{1/3}$.
The study of randomness in low-dimensional quantum antiferromagnets is at the forefront of research in the field of strongly correlated electron systems, yet there have been relatively few experimental model systems. Complementary neutron scattering and numerical experiments demonstrate that the spin-diluted Heisenberg antiferromagnet La2Cu(1-z)(Zn,Mg)zO4 is an excellent model material for square-lattice site percolation in the extreme quantum limit of spin one-half. Measurements of the ordered moment and spin correlations provide important quantitative information for tests of theories for this complex quantum-impurity problem.
294 - Guo-Zhu Liu , Wei Li , 2009
The strong long-range Coulomb interaction between massless Dirac fermions in graphene can drive a semimetal-insulator transition. We show that this transition is strongly suppressed when the Coulomb interaction is screened by such effects as disorder , thermal fluctuation, doping, and finite volume. It is completely suppressed once the screening factor $mu$ is beyond a threshold $mu_{c}$ even for infinitely strong coupling. However, such transition is still possible if there is an additional strong contact four-fermion interaction. The differences between screened and contact interactions are also discussed.
Aging effects in the relaxations of conductivity of a two-dimensional electron system in Si have been studied as a function of carrier density. They reveal an abrupt change in the nature of the glassy phase at the metal-insulator transition (MIT): (a ) while full aging is observed in the insulating regime, there are significant departures from full aging on the metallic side of the MIT, before the glassy phase disappears completely at a higher density $n_g$; (b) the amplitude of the relaxations peaks just below the MIT, and it is strongly suppressed in the insulating phase. Other aspects of aging, including large non-Gaussian noise and similarities to spin glasses, also have been discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا