ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-wavelength characterization of the blazar S5~0716+714 during an unprecedented outburst phase

135   0   0.0 ( 0 )
 نشر من قبل Marina Manganaro Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The BL Lac object S5~0716+714, a highly variable blazar, underwent an impressive outburst in January 2015 (Phase A), followed by minor activity in February (Phase B). The MAGIC observations were triggered by the optical flux observed in Phase A, corresponding to the brightest ever reported state of the source in the R-band. The comprehensive dataset collected is investigated in order to shed light on the mechanism of the broadband emission. Multi-wavelength light curves have been studied together with the broadband Spectral Energy Distributions (SEDs). The data set collected spans from radio, optical photometry and polarimetry, X-ray, high-energy (HE, 0.1 GeV < E < 100 GeV) with textit{Fermi}-LAT to the very-high-energy (VHE, E>100 GeV) with MAGIC. The flaring state of Phase A was detected in all the energy bands, providing for the first time a multi-wavelength sample of simultaneous data from the radio band to the VHE. In the constructed SED the textit{Swift}-XRT+textit{NuSTAR} data constrain the transition between the synchrotron and inverse Compton components very accurately, while the second peak is constrained from 0.1~GeV to 600~GeV by textit{Fermi}+MAGIC data. The broadband SED cannot be described with a one-zone synchrotron self-Compton model as it severely underestimates the optical flux in order to reproduce the X-ray to $gamma$-ray data. Instead we use a two-zone model. The EVPA shows an unprecedented fast rotation. An estimation of the redshift of the source by combined HE and VHE data provides a value of $z = 0.31 pm 0.02_{stats} pm 0.05_{sys}$, confirming the literature value. The data show the VHE emission originating in the entrance and exit of a superluminal knot in and out a recollimation shock in the inner jet. A shock-shock interaction in the jet seems responsible for the observed flares and EVPA swing. This scenario is also consistent with the SED modelling.

قيم البحث

اقرأ أيضاً

S5 0716+714 is a well known BL Lac object, one of the brightest and most active blazars. The discovery in the Very High Energy band (VHE, E > 100 GeV) by MAGIC happened in 2008. In January 2015 the source went through the brightest optical state ever observed, triggering MAGIC follow-up and a VHE detection with 13{sigma} significance (ATel 6999). Rich multiwavelength coverage of the flare allowed us to construct the broad-band spectral energy distribution of S5 0716+714 during its brightest outburst. In this work we will present the preliminary analysis of MAGIC and Fermi-LAT data of the flaring activity in January and February 2015 for the HE (0.1 < HE < 300 GeV) and VHE band, together with radio (Metsahovi, OVRO, VLBA, Effelsberg), sub-millimeter (SMA), optical (Tuorla, Perkins, Steward, AZT-8+ST7, LX-200, Kanata), X-ray and UV (Swift-XRT and UVOT), in the same time-window and discuss the time variability of the multiwavelength light curves during this impressive outburst.
We analyzed the multi-band optical behaviour of the BL Lacertae object, S5 0716+714, during its outburst state from 2014 November - 2015 March. We took data on 23 nights at three observatories, one in India and two in Bulgaria, making quasi-simultane ous observations in B, V, R, and I bands. We measured multi-band optical fluxes, colour and spectral variations for this blazar on intraday and short timescales. The source was in a flaring state during the period analyzed and displayed intense variability in all wavelengths. R band magnitude of 11.6 was attained by the target on 18 Jan 2015, which is the brightest value ever recorded for S5 0716+714. The discrete correlation function method yielded good correlation between the bands with no measurable time lags, implying that radiation in these bands originate from the same region and by the same mechanism. We also used the structure function technique to look for characteristic timescales in the light curves. During the times of rapid variability, no evidence for the source to display spectral changes with magnitude was found on either of the timescales. The amplitude of variations tends to increase with increasing frequency with a maximum of $sim$ 22% seen during flaring states in B band. A mild trend of larger variability amplitude as the source brightens was also found. We found the duty cycle of our source during the analyzed period to be $sim$ 90%. We also investigated the optical spectral energy distribution of S5 0716+714 using B, V, R, and I data points for 21 nights. We briefly discuss physical mechanisms most likely responsible for its flux and spectral variations.
69 - Sunil Chandra 2015
We present a detailed investigation of the flaring activity observed from a BL Lac object, S5 0716+714 , during its brightest ever optical state in the second half of January 2015. Observed almost simultaneously in the optical, X-rays and {gamma}-ray s, a significant change in the degree of optical polarization (PD) and a swing in the position angle (PA) of polarization were recorded. A detection in the TeV (VHE) was also reported by the MAGIC consortium during this flaring episode. Two prominent sub-flares, peaking about 5-days apart, were seen in almost all the energy bands. The multi-wavelength light-curves, spectral energy distribution (SED) and polarization are modeled using the time-dependent code developed by Zhang et al. (2014). This model assumes a straight jet threaded by large scale helical magnetic fields taking into account the light travel time effects, incorporating synchrotron flux and polarization in 3D geometry. The rapid variation in PD and rotation in PA are most likely due to re-connections happening in the emission region in the jet, as suggested by the change in the ratio of toroidal to poloidal components of magnetic field during quiescent and flaring states.
260 - U. Bach 2004
We present the results of a multi-frequency study of the structural evolution of the VLBI jet in the BL Lac object 0716+714 over the last 10 years. We show VLBI images obtained at 5 GHz, 8.4 GHz, 15 GHz and 22 GHz. The milliarcsecond source structure is best described by a one-sided core-dominated jet of ~10 mas length. Embedded jet components move superluminally with speeds ranging from 5 c to 16 c (assuming z=0.3). Such fast superluminal motion is not typical for BL Lac objects, however it is still in the range of jet speeds typically observed in quasars (10 c to 20 c). In 0716+714, younger components, that were ejected more recently, seem to move systematically slower than the older components. This and a systematic position angle variation of the inner (1 mas) portion of the VLBI jet, suggests an at least partly geometric origin of the observed velocity variations. The observed rapid motion and the derived Lorentz factors are discussed with regard to the rapid Intra-Day Variability (IDV) and the gamma-ray observations, from which very high Doppler factors are inferred.
The typical blazar S5 0716$+$714 is very interesting due to its rapid and large amplitude variability and high duty cycle of micro-variability in optical band. We analyze the observations in I, R and V bands obtained with the $1.0m$ telescope at Weih ai observatory of Shandong University from 2011 to 2018. The model of synchrotron radiation from turbulent cells in a jet has been proposed as a mechanism for explaining micro-variability seen in blazar light curves. Parameters such as the sizes of turbulent cells, the enhanced particle densities, and the location of the turbulent cells in the jet can be studied using this model. The model predicts a time lag between variations as observed in different frequency bands. Automatic model fitting method for micro-variability is developed, and the fitting results of our multi-frequency micro-variability observations support the model. The results show that both the amplitude and duration of flares decomposed from the micro-variability light curves confirm to the log-normal distribution. The turbulent cell size is within the range of about 5 to 55 AU, and the time lags of the micro-variability flares between the I-R and R-V bands should be several minutes. The time lags obtained from the turbulence model are consistent with the fitting statistical results, and the time lags of flares are correlated with the time lags of the whole light curve.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا