ترغب بنشر مسار تعليمي؟ اضغط هنا

Oxygen and helium in stripped-envelope supernovae

138   0   0.0 ( 0 )
 نشر من قبل Francesco Taddia
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of 507 spectra of 173 stripped-envelope (SE) supernovae (SNe) discovered by the untargeted Palomar Transient Factory (PTF) and intermediate PTF (iPTF) surveys. Our sample contains 55 Type IIb SNe (SNe IIb), 45 Type Ib SNe (SNe Ib), 56 Type Ic SNe (SNe Ic), and 17 Type Ib/c SNe (SNe Ib/c). We compare the SE SN subtypes via measurements of the pseudo-equivalent widths (pEWs) and velocities of the He I $lambdalambda5876, 7065$ and O I $lambda7774$ absorption lines. Consistent with previous work, we find that SNe Ic show higher pEWs and velocities in O I $lambda7774$ compared to SNe IIb and Ib. The pEWs of the He I $lambdalambda5876, 7065$ lines are similar in SNe Ib and IIb after maximum light. The He I $lambdalambda5876, 7065$ velocities at maximum light are higher in SNe Ib compared to SNe IIb. We have identified an anticorrelation between the He I $lambda7065$ pEW and O I $lambda7774$ velocity among SNe IIb and Ib. This can be interpreted as a continuum in the amount of He present at the time of explosion. It has been suggested that SNe Ib and Ic have similar amounts of He, and that lower mixing could be responsible for hiding He in SNe Ic. However, our data contradict this mixing hypothesis. The observed difference in the expansion rate of the ejecta around maximum light of SNe Ic ($V_{mathrm{m}}=sqrt{2E_{mathrm{k}}/M_{mathrm{ej}}}approx15,000$ km s$^{-1}$) and SNe Ib ($V_{mathrm{m}}approx9000$ km s$^{-1}$) would imply an average He mass difference of $sim1.4$ $M_{odot}$, if the other explosion parameters are assumed to be unchanged between the SE SN subtypes. We conclude that SNe Ic do not hide He but lose He due to envelope stripping.



قيم البحث

اقرأ أيضاً

We investigate two stripped-envelope supernovae (SNe) discovered in the nearby galaxy NGC 5806 by the (i)PTF. These SNe, designated PTF12os/SN 2012P and iPTF13bvn, exploded at a similar distance from the host-galaxy center. We classify PTF12os as a T ype IIb SN based on our spectral sequence; iPTF13bvn has previously been classified as Type Ib having a likely progenitor with zero age main sequence (ZAMS) mass below ~17 solar masses. Our main objective is to constrain the explosion parameters of iPTF12os and iPTF13bvn, and to put constraints on the SN progenitors. We present comprehensive datasets on the SNe, and introduce a new reference-subtraction pipeline (FPipe) currently in use by the iPTF. We perform a detailed study of the light curves (LCs) and spectral evolution of the SNe. The bolometric LCs are modeled using the hydrodynamical code HYDE. We use nebular models and late-time spectra to constrain the ZAMS mass of the progenitors. We perform image registration of ground-based images of PTF12os to archival HST images of NGC 5806 to identify a potential progenitor candidate. Our nebular spectra of iPTF13bvn indicate a low ZAMS mass of ~12 solar masses for the progenitor. The late-time spectra of PTF12os are consistent with a ZAMS mass of ~15 solar masses. We successfully identify a progenitor candidate to PTF12os using archival HST images. This source is consistent with being a cluster of massive stars. Our hydrodynamical modeling suggests that the progenitor of PTF12os had a compact He core with a mass of 3.25 solar masses, and that 0.063 solar masses of strongly mixed 56Ni was synthesized. Spectral comparisons to the Type IIb SN 2011dh indicate that the progenitor of PTF12os was surrounded by a hydrogen envelope with a mass lower than 0.02 solar masses. We also find tentative evidence that the progenitor of iPTF13bvn could have been surrounded by a small amount of hydrogen.
208 - E. Zapartas , M. Renzo , T. Fragos 2021
Stripped-envelope supernovae (Type IIb, Ib, Ic) showing little or no hydrogen are one of the main classes of explosions of massive stars. Their origin and the evolution of their progenitors are not fully understood as yet. Very massive single stars s tripped by their own winds ($gtrsim 25-30 M_{odot}$ at solar metallicity) are considered viable progenitors of these events. However, recent 1D core-collapse simulations show that some massive stars may collapse directly onto black holes after a failed explosion, with weak or no visible transient. In this letter, we estimate the effect of direct collapse onto a black hole on the rates of stripped-envelope supernovae that arise from single stars. For this, we compute single star MESA models at solar metallicity and map their final state to their core-collapse outcome following prescriptions commonly used in population synthesis. According to our models, no single stars that have lost their entire hydrogen-rich envelope are able to explode, and only a fraction of progenitors with a thin hydrogen envelope left (IIb progenitor candidates) do, unless we invoke increased wind mass-loss rates. This result increases the existing tension between the single-star scenario for stripped-envelope supernovae and their observed rates and properties. At face value, our results point towards an even higher contribution of binary progenitors for stripped-envelope supernovae. Alternatively, they may suggest inconsistencies in the common practice of mapping different stellar models to core-collapse outcomes and/or higher overall mass loss in massive stars.
We present 645 optical spectra of 73 supernovae (SNe) of Types IIb, Ib, Ic, and broad-lined Ic. All of these types are attributed to the core collapse of massive stars, with varying degrees of intact H and He envelopes before explosion. The SNe in ou r sample have a mean redshift <cz> = 4200 km/s. Most of these spectra were gathered at the Harvard-Smithsonian Center for Astrophysics (CfA) between 2004 and 2009. For 53 SNe, these are the first published spectra. The data coverage range from mere identification (1-3 spectra) for a few SNe to extensive series of observations (10-30 spectra) that trace the spectral evolution for others, with an average of 9 spectra per SN. For 44 SNe of the 73 SNe presented here, we have well-determined dates of maximum light to determine the phase of each spectrum. Our sample constitutes the most extensive spectral library of stripped-envelope SNe to date. We provide very early coverage (as early as 30 days before V-band max) for photospheric spectra, as well as late-time nebular coverage when the innermost regions of the SNe are visible (as late as 2 years after explosion, while for SN1993J, we have data as late as 11.6 years). This data set has homogeneous observations and reductions that allow us to study the spectroscopic diversity of these classes of stripped SNe and to compare these to SNe associated with gamma-ray bursts. We undertake these matters in follow-up papers.
We present observations of ZTF18abfcmjw (SN2019dge), a helium-rich supernova with a fast-evolving light curve indicating an extremely low ejecta mass ($approx 0.3,M_odot$) and low kinetic energy ($approx 1.2times 10^{50},{rm erg}$). Early-time (<4 d after explosion) photometry reveal evidence of shock cooling from an extended helium-rich envelope of $sim0.1,M_odot$ located at $sim 3times 10^{12},{rm cm}$ from the progenitor. Early-time He II line emission and subsequent spectra show signatures of interaction with helium-rich circumstellar material, which extends from $gtrsim 5times 10^{13},{rm cm}$ to $gtrsim 2times 10^{16},{rm cm}$. We interpret SN2019dge as a helium-rich supernova from an ultra-stripped progenitor, which originates from a close binary system consisting of a mass-losing helium star and a low-mass main sequence star or a compact object (i.e., a white dwarf, a neutron star, or a black hole). We infer that the local volumetric birth rate of 19dge-like ultra-stripped SNe is in the range of 1400--8200$,{rm Gpc^{-3}, yr^{-1}}$ (i.e., 2--12% of core-collapse supernova rate). This can be compared to the observed coalescence rate of compact neutron star binaries that are not formed by dynamical capture.
The first phase of the Carnegie Supernova Project (CSP-I) was a dedicated supernova follow-up program based at the Las Campanas Observatory that collected science data of young, low-redshift supernovae between 2004 and 2009. Presented in this paper i s the CSP-I photometric data release of low-redshift stripped-envelope core-collapse supernovae. The data consist of optical (uBgVri) photometry of 34 objects, with a subset of 26 having near-infrared (YJH) photometry. Twenty objects have optical pre-maximum coverage with a subset of 12 beginning at least five days prior to the epoch of B-band maximum brightness. In the near-infrared, 17 objects have pre-maximum observations with a subset of 14 beginning at least five days prior to the epoch of J-band maximum brightness. Analysis of this photometric data release is presented in companion papers focusing on techniques to estimate host-galaxy extinction (Stritzinger et al., submitted) and the light-curve and progenitor star properties of the sample (Taddia et al., submitted). The analysis of an accompanying visual-wavelength spectroscopy sample of ~150 spectra will be the subject of a future paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا