ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital and atmospheric characterization of the planet within the gap of the PDS 70 transition disk

66   0   0.0 ( 0 )
 نشر من قبل Andre M\\\"uller
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims: We aim to characterize the orbital and atmospheric properties of PDS 70 b, which was first identified on May 2015 in the course of the SHINE survey with SPHERE, the extreme adaptive-optics instrument at the VLT. Methods: We obtained new deep SPHERE/IRDIS imaging and SPHERE/IFS spectroscopic observations of PDS 70 b. The astrometric baseline now covers 6 years which allows us to perform an orbital analysis. For the first time, we present spectrophotometry of the young planet which covers almost the entire near-infrared range (0.96 to 3.8 micrometer). We use different atmospheric models covering a large parameter space in temperature, log(g), chemical composition, and cloud properties to characterize the properties of the atmosphere of PDS 70 b. Results: PDS 70 b is most likely orbiting the star on a circular and disk coplanar orbit at ~22 au inside the gap of the disk. We find a range of models that can describe the spectrophotometric data reasonably well in the temperature range between 1000-1600 K and log(g) no larger than 3.5 dex. The planet radius covers a relatively large range between 1.4 and 3.7 R_jupiter with the larger radii being higher than expected from planet evolution models for the age of the planet of 5.4 Myr. Conclusions: This study provides a comprehensive dataset on the orbital motion of PDS 70 b, indicating a circular orbit and a motion coplanar with the disk. The first detailed spectral energy distribution of PDS 70 b indicates a temperature typical for young giant planets. The detailed atmospheric analysis indicates that a circumplanetary disk may contribute to the total planet flux.



قيم البحث

اقرأ أيضاً

Young circumstellar disks are of prime interest to understand the physical and chemical conditions under which planet formation takes place. Only very few detections of planet candidates within these disks exist, and most of them are currently suspec ted to be disk features. In this context, the transition disk around the young star PDS 70 is of particular interest, due to its large gap identified in previous observations, indicative of ongoing planet formation. We aim to search for the presence of planets and search for disk structures indicative for disk-planet interactions and other evolutionary processes. We analyse new and archival near-infrared (NIR) images of the transition disk PDS 70 obtained with the VLT/SPHERE, VLT/NaCo and Gemini/NICI instruments in polarimetric differential imaging (PDI) and angular differential imaging (ADI) modes. We detect a point source within the gap of the disk at about 195 mas (about 22 au) projected separation. The detection is confirmed at five different epochs, in three filter bands and using different instruments. The astrometry results in an object of bound nature, with high significance. The comparison of the measured magnitudes and colours to evolutionary tracks suggests that the detection is a companion of planetary mass. We confirm the detection of a large gap of about 54 au in size within the disk in our scattered light images, and detect a signal from an inner disk component. We find that its spatial extent is very likely smaller than about 17 au in radius. The images of the outer disk show evidence of a complex azimuthal brightness distribution which may in part be explained by Rayleigh scattering from very small grains. Future observations of this system at different wavelengths and continuing astrometry will allow us to test theoretical predictions regarding planet-disk interactions, planetary atmospheres and evolutionary models.
As host to two accreting planets, PDS 70 provides a unique opportunity to probe the chemical complexity of atmosphere-forming material. We present ALMA Band 6 observations of the PDS~70 disk and report the first chemical inventory of the system. With a spatial resolution of 0.4-0.5 ($sim$50 au), 12 species are detected, including CO isotopologues and formaldehyde, small hydrocarbons, HCN and HCO+ isotopologues, and S-bearing molecules. SO and CH3OH are not detected. All lines show a large cavity at the center of the disk, indicative of the deep gap carved by the massive planets. The radial profiles of the line emission are compared to the (sub-)mm continuum and infrared scattered light intensity profiles. Different molecular transitions peak at different radii, revealing the complex interplay between density, temperature and chemistry in setting molecular abundances. Column densities and optical depth profiles are derived for all detected molecules, and upper limits obtained for the non detections. Excitation temperature is obtained for H2CO. Deuteration and nitrogen fractionation profiles from the hydro-cyanide lines show radially increasing fractionation levels. Comparison of the disk chemical inventory to grids of chemical models from the literature strongly suggests a disk molecular layer hosting a carbon to oxygen ratio C/O>1, thus providing for the first time compelling evidence of planets actively accreting high C/O ratio gas at present time.
While numerical simulations have been playing a key role in the studies of planet-disk interaction, testing numerical results against observations has been limited so far. With the two directly imaged protoplanets embedded in its circumstellar disk, PDS 70 offers an ideal testbed for planet-disk interaction studies. Using two-dimensional hydrodynamic simulations we show that the observed features can be well explained with the two planets in formation, providing strong evidence that previously proposed theories of planet-disk interaction are in action, including resonant migration, particle trapping, size segregation, and filtration. Our simulations suggest that the two planets are likely in 2:1 mean motion resonance and can remain dynamically stable over million-year timescales. The growth of the planets at $10^{-8}-10^{-7}~M_{rm Jup}~{rm yr}^{-1}$, rates comparable to the estimates from H$alpha$ observations, does not destabilize the resonant configuration. Large grains are filtered at the gap edge and only small, (sub-)$mu$m grains can flow to the circumplanetary disks and the inner circumstellar disk. With the sub-millimeter continuum ring observed outward of the two directly imaged planets, PDS 70 provides the first observational evidence of particle filtration by gap-opening planets. The observed sub-millimeter continuum emission at the vicinity of the planets can be reproduced when (sub-)$mu$m grains survive over multiple circumplanetary disk gas viscous timescales and accumulate therein. One such possibility is if (sub-)$mu$m grains grow in size and remain trapped in pressure bumps, similar to what we find happening in circumstellar disks. We discuss potential implications to planet formation in the solar system and mature extrasolar planetary systems.
The circumstellar disk of PDS 70 hosts two forming planets, which are actively accreting gas from their environment. In this work, we report the first detection of PDS 70 b in the Br$alpha$ and $M$ filters with VLT/NACO, a tentative detection of PDS 70 c in Br$alpha$, and a reanalysis of archival NACO $L$ and SPHERE $H23$ and $K12$ imaging data. The near side of the disk is also resolved with the Br$alpha$ and $M$ filters, indicating that scattered light is non-negligible at these wavelengths. The spectral energy distribution of PDS 70 b is well described by blackbody emission, for which we constrain the photospheric temperature and photospheric radius to $T_mathrm{eff}=1193 pm 20$ K and $R=3.0 pm 0.2$ $R_mathrm{J}$. The relatively low bolometric luminosity, $log(L/L_odot) = -3.79 pm 0.02$, in combination with the large radius, is not compatible with standard structure models of fully convective objects. With predictions from such models, and adopting a recent estimate of the accretion rate, we derive a planetary mass and radius in the range of $M_mathrm{p}approx 0.5-1.5$ $M_mathrm{J}$ and $R_mathrm{p}approx 1-2.5$ $R_mathrm{J}$, independently of the age and post-formation entropy of the planet. The blackbody emission, large photospheric radius, and the discrepancy between the photospheric and planetary radius suggests that infrared observations probe an extended, dusty environment around the planet, which obscures the view on its molecular composition. Finally, we derive a rough upper limit on the temperature and radius of potential excess emission from a circumplanetary disk, $T_mathrm{eff}lesssim256$ K and $Rlesssim245$ $R_mathrm{J}$, but we do find weak evidence that the current data favors a model with a single blackbody component.
320 - M. Keppler , R. Teague , J. Bae 2019
PDS 70b is the most robustly detected young planet imaged in the gap of a transition disk so far, found at a separation of ~195 mas (~22 au) from its host star and at a position angle of about 155 deg. This system is therefore a unique laboratory to characterize the properties of young planetary systems at the stage of their formation. We aim to trace direct and indirect imprints of PDS 70b on the gas and dust emission of the circumstellar disk in order to study the properties of this ~5 Myr young planetary system. We obtained ALMA band 7 observations of PDS 70 in dust continuum and $^{12}CO$ (3-2) and combined them with archival data resulting in an unprecedented angular resolution of about 70 mas (~8 au). We derive an upper limit on circumplanetary material at the location of PDS 70b of ~0.01 $M_{oplus}$ and find a highly structured circumstellar disk in both dust and gas. The outer dust ring peaks at ~0.65 (74 au) and reveals a possible second unresolved peak at ~0.53 (60 au). The integrated intensity of CO also shows evidence of a depletion of emission at ~0.2 (23 au) with a width of ~0.1 (11 au). The gas kinematics show evidence of a deviation from Keplerian rotation inside $lesssim$0.8 (91 au). This implies a pressure gradient that can account for the location of the dust ring well beyond the location of PDS 70b. Further in, we detect an inner disk which appears to be connected to the outer disk by a possible bridge feature in the North-West region in both gas and dust. We compare the observations to hydrodynamical simulations including a planet with different masses covering the estimated mass range previously derived from NIR photometry (~5-9 M$_{Jup}$). We find that even a planet with a mass of 10 M$_{Jup}$ may not be sufficient to explain the extent of the wide gap and an additional low-mass companion may be needed to account for the observed disk morphology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا