ﻻ يوجد ملخص باللغة العربية
We have made a survey of heavy-to-heavy and heavy-to-light nonleptonic heavy baryon two-body decays and have identified those decays that proceed solely via $W$-boson emission, i.e. via the tree graph contribution. Some sample decays are $Omega_{b}^{-}toOmega_{c}^{(*)0}rho^{-}(pi^{-}),, Omega_{b}^{-}toOmega^{-}J/psi(eta_{c}),, Xi_{b}^{0,-}toXi^{0,-}J/psi(eta_{c}),, Lambda_{b}to Lambda J/psi(eta_{c}),, Lambda_{b}to Lambda_{c} D_{s}^{(ast)},, Omega_{c}^{0}toOmega^{-}rho^{+}(pi^{+})$, and $Lambda_c to p phi$. We make use of the covariant confined quark model previously developed by us to calculate the tree graph contributions to these decays. We calculate rates, branching fractions and, for some of these decays, decay asymmetry parameters. We compare our results to experimental findings and the results of other theoretical approaches when they are available. Our main focus is on decays to final states with a lepton pair because of their clean experimental signature. For these decays we discuss two-fold polar angle decay distributions such as in the cascade decay $Omega_{b}^{-}toOmega^{-}(to Xipi,Lambda K^{-})+J/psi(to ell^{+}ell^{-})$. Lepton mass effects are always included in our analysis.
Exclusive nonleptonic decays of bottom and charm baryons are studied within a relativistic quark model. We include factorizing as well as nonfactorizing contributions to the decay amplitudes.
In this article, we study the rare decays corresponding to $b to d$ transition in the framework of covariant confined quark model. The transition form factors for the channels $B^{+(0)} to (pi^{+(0)}, rho^{+(0)},omega)$ and $B_s^0 to K^{(*)0}$ are co
The recent discovery of double charm baryon states by the LHCb Collaborarion and their high precision mass determination calls for a comprehensive analysis of the nonleptonic decays of double and single heavy baryons. Nonleptonic baryon decays play a
Bethe-Salpeter approach has been applied to the study of b --> c transitions both for heavy mesons and heavy baryons. Meson and baryon IW functions are calculated on the equal footing. A reasonable agreement with the experimental data for heavy to heavy semileptonic transitions has been obtained.
We analyze charm meson semileptonic $D to V l u_l$ and $Dto P l u_l$ and nonleptonic $D to P V$, $D to PP$ and $D to VV$ decays within a model which combines the heavy quark effective Lagrangian and chiral perturbation theory.