ترغب بنشر مسار تعليمي؟ اضغط هنا

44 Validated Planets from K2 Campaign 10

98   0   0.0 ( 0 )
 نشر من قبل John Livingston
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present 44 validated planets from the 10$^mathrm{th}$ observing campaign of the NASA $K2$ mission, as well as high resolution spectroscopy and speckle imaging follow-up observations. These 44 planets come from an initial set of 72 vetted candidates, which we subjected to a validation process incorporating pixel-level analyses, light curve analyses, observational constraints, and statistical false positive probabilities. Our validated planet sample has median values of $R_p$ = 2.2 $R_oplus$, $P_mathrm{orb}$ = 6.9 days, $T_{mathrm{eq}}$ = 890 K, and $J$ = 11.2 mag. Of particular interest are four ultra-short period planets ($P_mathrm{orb} lesssim 1$ day), 16 planets smaller than 2 $R_oplus$, and two planets with large predicted amplitude atmospheric transmission features orbiting infrared-bright stars. We also present 27 planet candidates, most of which are likely to be real and worthy of further observations. Our validated planet sample includes 24 new discoveries, and has enhanced the number of currently known super-Earths ($R_p approx 1-2 R_oplus$), sub-Neptunes ($R_p approx 2-4 R_oplus$), and sub-Saturns ($R_p approx 4-8 R_oplus$) orbiting bright stars ($J = 8-10$ mag) by $sim$4%, $sim$17%, and $sim$11%, respectively.

قيم البحث

اقرأ أيضاً

We present a uniform analysis of 155 candidates from the second year of NASAs $K2$ mission (Campaigns 5-8), yielding 60 statistically validated planets spanning a range of properties, with median values of $R_p$ = 2.5 $R_oplus$, $P$ = 7.1 d, $T_mathr m{eq}$ = 811 K, and $J$ = 11.3 mag. The sample includes 24 planets in 11 multi-planetary systems, as well as 18 false positives, and 77 remaining planet candidates. Of particular interest are 18 planets smaller than 2 $R_oplus$, five orbiting stars brighter than $J$ = 10 mag, and a system of four small planets orbiting the solar-type star EPIC 212157262. We compute planetary transit parameters and false positive probabilities using a robust statistical framework and present a complete analysis incorporating the results of an intensive campaign of high resolution imaging and spectroscopic observations. This work brings the $K2$ yield to over 360 planets, and by extrapolation we expect that $K2$ will have discovered $sim$600 planets before the expected depletion of its on-board fuel in late 2018.
We analysed 68 candidate planetary systems first identified during Campaigns 5 and 6 (C5 and C6) of the NASA textit{K2} mission. We set out to validate these systems by using a suite of follow-up observations, including adaptive optics, speckle imagi ng, and reconnaissance spectroscopy. The overlap between C5 with C16 and C18, and C6 with C17, yields lightcurves with long baselines that allow us to measure the transit ephemeris very precisely, revisit single transit candidates identified in earlier campaigns, and search for additional transiting planets with longer periods not detectable in previous works. Using texttt{vespa}, we compute false positive probabilities of less than 1% for 37 candidates orbiting 29 unique host stars and hence statistically validate them as planets. These planets have a typical size of $2.2R_{oplus}$ and orbital periods between 1.99 and 52.71 days. We highlight interesting systems including a sub-Neptune with the longest period detected by textit{K2}, sub-Saturns around F stars, several multi-planetary systems in a variety of architectures. These results show that a wealth of planetary systems still remains in the textit{K2} data, some of which can be validated using minimal follow-up observations and taking advantage of analyses presented in previous catalogs.
Using the EVEREST photometry pipeline, we have identified 74 candidate ultra-short-period planets (orbital period P<1 d) in the first half of the K2 data (Campaigns 0-8 and 10). Of these, 33 candidates have not previously been reported. A systematic search for additional transiting planets found 13 new multi-planet systems, doubling the number known and representing a third (32%) of USPs. We also identified 30 companions, which have periods from 1.4 to 31 days (median 5.5 d). A third (36 of 104) of the candidate USPs and companions have been statistically validated or confirmed, 10 for the first time, including 7 USPs. Almost all candidates, and all validated planets, are small (radii Rp<=3 R_E) with a median radius of R_p=1.1 R_E; the validated and confirmed candidates have radii between 0.4 R_E and 2.4 R_E and periods from P=0.18 to 0.96 d. The lack of candidate (a) ultra-hot-Jupiters (R_p>10 R_E) and (b) short-period desert (3<=Rp<=10 R_E) planets suggests that both populations are rare, although our survey may have missed some of the very deepest transits. These results also provide strong evidence that we have not reached a lower limit on the distribution of planetary radius values for planets at close proximity to a star, and suggest that additional improvements in photometry techniques would yield yet more ultra-short-period planets. The large fraction of USPs in known multi-planet systems supports origins models that involve dynamical interactions with exterior planets coupled to tidal decay of the USP orbits.
Transiting super-Earths orbiting bright stars in short orbital periods are interesting targets for the study of planetary atmospheres. While selecting super-Earths suitable for further characterization from the ground among a list of confirmed and va lidated exoplanets detected by K2, we found some suspicious cases that led to us re-assessing the nature of the detected transiting signal. We did a photometric analysis of the K2 light curves and centroid motions of the photometric barycenters. Our study shows that the validated planets K2-78b, K2-82b, and K2-92b are actually not planets but background eclipsing binaries. The eclipsing binaries are inside the Kepler photometric aperture, but outside the ground-based high resolution images used for validation. We advise extreme care on the validation of candidate planets discovered by space missions. It is important that all the assumptions in the validation process are carefully checked. An independent confirmation is mandatory in order to avoid wasting valuable resources on further characterization of non-existent targets.
Given that Campaign 16 of the K2 mission is one of just two K2 campaigns observed so far in forward-facing mode, which enables immediate follow-up observations from the ground, we present a catalog of interesting targets identified through photometry alone. Our catalog includes 30 high-quality planet candidates (showing no signs of being non-planetary in nature), 48 more ambiguous events that may be either planets or false positives, 164 eclipsing binaries, and 231 other regularly periodic variable sources. We have released light curves for all targets in C16, and have also released system parameters and transit vetting plots for all interesting candidates identified in this paper. Of particular interest is a candidate planet orbiting the bright F dwarf HD 73344 (V=6.9, K=5.6) with an orbital period of 15 days. If confirmed, this object would correspond to a $2.56 pm 0.18 R_oplus$ planet and would likely be a favorable target for radial velocity characterization. This paper is intended as a rapid release of planet candidates, eclipsing binaries and other interesting periodic variables to maximize the scientific yield of this campaign, and as a test run for the upcoming TESS mission, whose frequent data releases call for similarly rapid candidate identification and efficient follow-up.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا