ﻻ يوجد ملخص باللغة العربية
The Compact High Energy Camera (CHEC) is a camera design for the Small-Sized Telescopes (SSTs; 4 m diameter mirror) of the Cherenkov Telescope Array (CTA). The SSTs are focused on very-high-energy $gamma$-ray detection via atmospheric Cherenkov light detection over a very large area. This implies many individual units and hence cost-effective implementation. CHEC relies on dual-mirror optics to reduce the plate-scale and make use of 6 $times$ 6 mm$^2$ pixels, leading to a low-cost ($sim$150 kEuro), compact (0.5 m $times$ 0.5 m), and light ($sim$45 kg) camera with 2048 pixels providing a camera FoV of $sim$9 degrees. The electronics are based on custom TARGET (TeV array readout with GSa/s sampling and event trigger) ASICs and FPGAs sampling incoming signals at a gigasample per second, with flexible camera-level triggering within a single backplane FPGA. CHEC is designed to observe in the $gamma$-ray energy range of 1$-$300 TeV, and at impact distances up to $sim$500 m. To accommodate this and provide full flexibility for later data analysis, full waveforms with 96 samples for all 2048 pixels can be read out at rates up to $sim$900 Hz. The first prototype, CHEC-M, based on multi-anode photomultipliers (MAPMs) as photosensors, was commissioned and characterised in the laboratory and during two measurement campaigns on a telescope structure at the Paris Observatory in Meudon. In this paper, the results and conclusions from the laboratory and on-site testing of CHEC-M are presented. They have provided essential input on the system design and on operational and data analysis procedures for a camera of this type. A second full-camera prototype based on Silicon photomultipliers (SiPMs), addressing the drawbacks of CHEC-M identified during the first prototype phase, has already been built and is currently being commissioned and tested in the laboratory.
NectarCAM is a camera proposed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) which covers the core energy range of ~100 GeV to ~30 TeV. It has a modular design and is based on the NECTAr chip, at the heart of which is a GHz s
NectarCAM is a camera proposed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) covering the central energy range of ~100 GeV to ~30 TeV. It has a modular design and is based on the NECTAr chip, at the heart of which is a GHz sa
The FlashCam group is currently preparing photomultiplier-tube based cameras proposed for the medium-sized telescopes (MST) of the Cherenkov Telescope Array (CTA). The cameras are designed around the FlashCam readout concept which is the first fully-
The Gamma-ray Cherenkov Telescope (GCT) is a candidate for the Small Size Telescopes (SSTs) of the Cherenkov Telescope Array (CTA). Its purpose is to extend the sensitivity of CTA to gamma-ray energies reaching 300 TeV. Its dual-mirror optical design
A Large Size air Cherenkov Telescope (LST) prototype, proposed for the Cherenkov Telescope Array (CTA), is under construction at the Canary Island of La Palma (Spain) this year. The LST camera, which comprises an array of about 500 photomultipliers (