ترغب بنشر مسار تعليمي؟ اضغط هنا

Revealing the hidden order in BaTi2As2O via nuclear magnetic resonance

112   0   0.0 ( 0 )
 نشر من قبل Tao Wu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In low-dimensional metallic systems, lattice distortion is usually coupled to a density-wave-like electronic instability due to Fermi surface nesting (FSN) and strong electron-phonon coupling. However, the ordering of other electronic degrees of freedom can also occur simultaneously with the lattice distortion thus challenges the aforementioned prevailing scenario. Recently, a hidden electronic reconstruction beyond FSN was revealed in a layered metallic compound BaTi2As2O below the structural transition temperature Ts ~ 200 K. The nature of this hidden electronic instability is under strong debate. Here, by measuring the local orbital polarization through 75As nuclear magnetic resonance experiment, we observe a p-d bond order between Ti and As atoms in BaTi2As2O single crystal. Below Ts, the bond order breaks both rotational and translational symmetry of the lattice. Meanwhile, the spin-lattice relaxation measurement indicates a substantial loss of density of states and an enhanced spin fluctuation in the bond-order state. Further first-principles calculations suggest that the mechanism of the bond order is due to the coupling of lattice and nematic instabilities. Our results strongly support a bond-order driven electronic reconstruction in BaTi2As2O and shed light on the mechanism of superconductivity in this family.

قيم البحث

اقرأ أيضاً

The orbital-selective Mott phase (OSMP) of multiorbital Hubbard models has been extensively analyzed before using static and dynamical mean-field approximations. In parallel, the properties of Block states (antiferromagnetically coupled ferromagnetic spin clusters) in Fe-based superconductors have also been much discussed. The present effort uses numerically exact techniques in one-dimensional systems to report the observation of Block states within the OSMP regime, connecting two seemingly independent areas of research, and providing analogies with the physics of Double-Exchange models.
In strongly-correlated systems the electronic properties at the Fermi energy (EF) are intertwined with those at high energy scales. One of the pivotal challenges in the field of high-temperature superconductivity (HTSC) is to understand whether and h ow the high energy scale physics associated with Mott-like excitations (|E-E$_{F}$|>1 eV) is involved in the condensate formation. Here we show the interplay between the many-body high-energy CuO2 excitations at 1.5 and 2 eV and the onset of HTSC. This is revealed by a novel optical pump supercontinuum-probe technique, which provides access to the dynamics of the dielectric function in Bi$_2$Sr$_2$Ca$_{0.92}$Y$_{0.08}$Cu$_2$O$_{8+{delta}}$ over an extended energy range, after the photoinduced suppression of the superconducting pairing. These results unveil an unconventional mechanism at the base of HTSC both below and above the optimal hole concentration required to attain the maximum critical temperature (T$_c$).
88 - Yu Li , Zhonghao Liu , Zhuang Xu 2019
A series of Sr(Co$_{1-x}$Ni$_x$)$_2$As$_2$ single crystals was synthesized allowing a comprehensive phase diagram with respect to field, temperature, and chemical substitution to be established. Our neutron diffraction experiments revealed a helimagn etic order with magnetic moments ferromagnetically (FM) aligned in the $ab$ plane and a helimagnetic wavevector of $q=(0,0,0.56)$ for $x$ = 0.1. The combination of neutron diffraction and angle-resolved photoemission spectroscopy (ARPES) measurements show that the tuning of a flat band with $d_{x^2-y^2}$ orbital character drives the helimagnetism and indicates the possibility of a quantum order-by-disorder mechanism.
Layered van-der-Waals 2D magnetic materials are of great interest in fundamental condensed-matter physics research, as well as for potential applications in spintronics and device physics. We present neutron powder diffraction data using new ultra-hi gh-pressure techniques to measure the magnetic structure of Mott-insulating 2D honeycomb antiferromagnet FePS$_3$ at pressures up to 183 kbar and temperatures down to 80 K. These data are complemented by high-pressure magnetometry and reverse Monte Carlo modeling of the spin configurations. As pressure is applied, the previously-measured ambient-pressure magnetic order switches from an antiferromagnetic to a ferromagnetic interplanar interaction, and from 2D-like to 3D-like character. The overall antiferromagnetic structure within the $ab$ planes, ferromagnetic chains antiferromagnetically coupled, is preserved, but the magnetic propagation vector is altered from $(0:1:frac{1}{2})$ to $(0:1:0)$, a halving of the magnetic unit cell size. At higher pressures, coincident with the second structural transition and the insulator-metal transition in this compound, we observe a suppression of this long-range-order and emergence of a form of magnetic short-range order which survives above room temperature. Reverse Monte Carlo fitting suggests this phase to be a short-ranged version of the original ambient pressure structure - with a return to antiferromagnetic interplanar correlations. The persistence of magnetism well into the HP-II metallic state is an observation in seeming contradiction with previous x-ray spectroscopy results which suggest a spin-crossover transition.
76 - K. Tomiyasu , H. Suzuki , M. Toki 2008
We measured two magnetic modes with finite and discrete energies in an antiferromagnetic ordered phase of a geometrically frustrated magnet MgCr2O4 by single-crystal inelastic neutron scattering, and clarified the spatial spin correlations of the two levels: one is an antiferromagnetic hexamer and the other is an antiferromagnetic heptamer. Since these correlation types are emblematic of quasielastic scattering with geometric frustration, our results indicate instantaneous suppression of lattice distortion in an ordered phase by spin-lattice coupling, probably also supported by orbital and charge. The common features in the two levels, intermolecular independence and discreteness of energy, suggest that the spin molecules are interpreted as quasiparticles (elementary excitations with energy quantum) of highly frustrated spins, in analogy with the Fermi liquid approximation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا