We consider optimizing the placement of stubborn agents in a social network in order to maximally influence the population. We assume individuals in a directed social network each have a latent opinion that evolves over time in response to social media posts by their neighbors. The individuals randomly communicate noi
We consider a community detection problem for gossip dynamics with stubborn agents in this paper. It is assumed that the communication probability matrix for agent pairs has a block structure. More specifically, we assume that the network can be divi
ded into two communities, and the communication probability of two agents depends on whether they are in the same community. Stability of the model is investigated, and expectation of stationary distribution is characterized, indicating under the block assumption, the stationary behaviors of agents in the same community are similar. It is also shown that agents in different communities display distinct behaviors if and only if state averages of stubborn agents in different communities are not identical. A community detection algorithm is then proposed to recover community structure and to estimate communication probability parameters. It is verified that the community detection part converges in finite time, and the parameter estimation part converges almost surely. Simulations are given to illustrate algorithm performance.
We consider a community detection problem in a gossip model, where agents randomly interact pairwise, with stubborn agents never changing their states. It is assumed that the agents can be divided into two communities based on their interaction proba
bility with others. Such a model can illustrate how disagreement and opinion fluctuation arise in a social network. The considered problem is twofold: to infer which community each agent belongs to, and to estimate interaction probabilities between agents, by only observing their state evolution. First, stability and limit theorems of the model are derived. An integrated detection and estimation algorithm is then proposed to infer the two communities and to estimate the interaction probabilities, based on agent states. It is verified that the community detector of the algorithm converges in finite time, and the interaction estimator converges almost surely. In addition, non-asymptotic property is obtained for the former, and convergence rate is analyzed for the latter. Simulations are presented to illustrate the performance of the proposed algorithm.
The forecasting of political, economic, and public health indicators using internet activity has demonstrated mixed results. For example, while some measures of explicitly surveyed public opinion correlate well with social media proxies, the opportun
ity for profitable investment strategies to be driven solely by sentiment extracted from social media appears to have expired. Nevertheless, the internets space of potentially predictive input signals is combinatorially vast and will continue to invite careful exploration. Here, we combine unemployment related search data from Google Trends with economic language on Twitter to attempt to nowcast and forecast: 1. State and national unemployment claims for the US, and 2. Consumer confidence in G7 countries. Building off of a recently developed search-query-based model, we show that incorporating Twitter data improves forecasting of unemployment claims, while the original method remains marginally better at nowcasting. Enriching the input signal with temporal statistical features (e.g., moving average and rate of change) further reduces errors, and improves the predictive utility of the proposed method when applied to other economic indices, such as consumer confidence.
Dynamic networks, also called network streams, are an important data representation that applies to many real-world domains. Many sets of network data such as e-mail networks, social networks, or internet traffic networks are best represented by a dy
namic network due to the temporal component of the data. One important application in the domain of dynamic network analysis is anomaly detection. Here the task is to identify points in time where the network exhibits behavior radically different from a typical time, either due to some event (like the failure of machines in a computer network) or a shift in the network properties. This problem is made more difficult by the fluid nature of what is considered normal network behavior. The volume of traffic on a network, for example, can change over the course of a month or even vary based on the time of the day without being considered unusual. Anomaly detection tests using traditional network statistics have difficulty in these scenarios due to their Density Dependence: as the volume of edges changes the value of the statistics changes as well making it difficult to determine if the change in signal is due to the traffic volume or due to some fundamental shift in the behavior of the network. To more accurately detect anomalies in dynamic networks, we introduce the concept of Density-Consistent network statistics. On synthetically generated graphs anomaly detectors using these statistics show a a 20-400% improvement in the recall when distinguishing graphs drawn from different distributions. When applied to several real datasets Density-Consistent statistics recover multiple network events which standard statistics failed to find.
In this paper we propose a novel method to forecast the result of elections using only official results of previous ones. It is based on the voter model with stubborn nodes and uses theoretical results developed in a previous work of ours. We look at
popular vote shares for the Conservative and Labour parties in the UK and the Republican and Democrat parties in the US. We are able to perform time-evolving estimates of the model parameters and use these to forecast the vote shares for each party in any election. We obtain a mean absolute error of 4.74%. As a side product, our parameters estimates provide meaningful insight on the political landscape, informing us on the proportion of voters that are strong supporters of each of the considered parties.