ترغب بنشر مسار تعليمي؟ اضغط هنا

Abundances of ordinary chondrites in thermally evolving planetesimals

97   0   0.0 ( 0 )
 نشر من قبل Shigeru Wakita
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chondrites are one of the most primitive objects in the solar system, and keep the record of the degree of thermal metamorphism experienced in their parent bodies. This thermal history can be classified by the petrologic type. We investigate the thermal evolution of planetesimals to account for the current abundances (known as the fall statistics) of petrologic types 3 - 6 ordinary chondrites. We carry out a number of numerical calculations in which formation times and sizes of planetesimals are taken as parameters. We find that planetesimals that form within 2.0 Myr after the formation of Ca-Al-rich inclusions (CAIs) can contain all petrologic types of ordinary chondrites. Our results also indicate that plausible scenarios of planetesimal formation, which are consistent with the fall statistics, are that planetesimals with radii larger than 60 km start to form around 2.0 Myr after CAIs and/or that ones with radii less than 50 km should be formed within 1.5 Myr after CAIs. Thus, thermal modelling of planetesimals is important for revealing the occurrence and amount of metamorphosed chondrites, and for providing invaluable insights into planetesimal formation.

قيم البحث

اقرأ أيضاً

Presolar grains are small particles found in meteorites through their isotopic compositions which are considerably different from those of materials in the Solar System. If some isotopes in presolar grains diffused out beyond their grain sizes when t hey were embedded in parent bodies of meteorites, their isotopic compositions could be washed out, and hence the grains cannot be identified as presolar grains any more. We explore this possibility for the first time by self-consistently simulating the thermal evolution of planetesimals and the diffusion length of $^{18}$O in presolar silicate grains. Our results show that presolar silicate grains smaller than $sim$ 0.03 $mu m$ cannot keep their original isotopic compositions even if the host planetesimals experienced maximum temperature as low as 600 $^{circ}$C. Since this temperature corresponds to the one experienced by petrologic type 3 chondrites, the isotopic diffusion can constrain the size of presolar silicate grains discovered in such chondrites to be larger than $sim$ 0.03 $mu m$. We also find that the diffusion lengths of $^{18}$O reach $sim$ 0.3-2 $mu m$ in planetesimals that were heated up to 700-800 $^{circ}$C. This indicates that, if the original size of presolar grains spans a range from $sim$ 0.001 $mu m$ to $sim$ 0.3 $mu m$ like that in the interstellar medium, the isotopic records of the presolar grains may be almost completely lost in such highly thermalized parent bodies. We propose that isotopic diffusion could be a key process to control the size distribution and abundance of presolar grains in some types of chondrites.
115 - M. Marsset , B. Carry , C. Dumas 2017
Context. The high-angular-resolution capability of the new-generation ground-based adaptive-optics camera SPHERE at ESO VLT allows us to assess, for the very first time, the cratering record of medium-sized (D~100-200 km) asteroids from the ground, o pening the prospect of a new era of investigation of the asteroid belts collisional history. Aims. We investigate here the collisional history of asteroid (6) Hebe and challenge the idea that Hebe may be the parent body of ordinary H chondrites, the most common type of meteorites found on Earth (~34% of the falls). Methods. We observed Hebe with SPHERE as part of the science verification of the instrument. Combined with earlier adaptive-optics images and optical light curves, we model the spin and three-dimensional (3D) shape of Hebe and check the consistency of the derived model against available stellar occultations and thermal measurements. Results. Our 3D shape model fits the images with sub-pixel residuals and the light curves to 0.02 mag. The rotation period (7.274 47 h), spin (343 deg,+47 deg), and volume-equivalent diameter (193 +/- 6km) are consistent with previous determinations and thermophysical modeling. Hebes inferred density is 3.48 +/- 0.64 g.cm-3 , in agreement with an intact interior based on its H-chondrite composition. Using the 3D shape model to derive the volume of the largest depression (likely impact crater), it appears that the latter is significantly smaller than the total volume of close-by S-type H-chondrite-like asteroid families. Conclusions. Our results imply that (6) Hebe is not the most likely source of H chondrites. Over the coming years, our team will collect similar high-precision shape measurements with VLT/SPHERE for ~40 asteroids covering the main compositional classes, thus providing an unprecedented dataset to investigate the origin and collisional evolution of the asteroid belt.
Carbonaceous chondrites (CCs) may have been the carriers of water, volatile and moderately volatile elements to Earth. Investigating the abundances of these elements, their relative volatility, and isotopes of state-change tracer elements such as Zn, and linking these observations to water contents, provide vital information on the processes that govern the abundances and isotopic signatures of these species in CCs and other planetary bodies. Here we report Zn isotopic data for 28 CCs (20 CM, 6 CR, 1 C2-ung, and 1 CV3), as well as trace element data for Zn, In, Sn, Tl, Pb, and Bi in 16 samples (8 CM, 6 CR, 1 C2-ung, and 1 CV3), that display a range of elemental abundances from case-normative to intensely depleted. We use these data, water content data from literature and Zn isotopes to investigate volatile depletions and to discern between closed and open system heating. Trace element data have been used to construct relative volatility scales among the elements for the CM and CR chondrites. From least volatile to most, the scale in CM chondrites is Pb-Sn-Bi-In-Zn-Tl, and for CR chondrites it is Tl-Zn-Sn-Pb-Bi-In. These observations suggest that heated CM and CR chondrites underwent volatile loss under different conditions to one another and to that of the solar nebula, e.g. differing oxygen fugacities. Furthermore, the most water and volatile depleted samples are highly enriched in the heavy isotopes of Zn. Taken together, these lines of evidence strongly indicate that heated CM and CR chondrites incurred open system heating, stripping them of water and volatiles concomitantly, during post-accretionary shock impact(s).
We report microscopic, cathodoluminescence, chemical and O isotopic measurements of FeO-poor isolated olivine grains (IOG) in the carbonaceous chondrites Allende (CV3), Northwest Africa 5958 (C2-ung), Northwest Africa 11086 (CM2-an), Allan Hills 7730 7 (CO3.0). The general petrographic, chemical and isotopic similarity with bona fide type I chondrules confirms that the IOG derived from them. The concentric CL zoning, reflecting a decrease in refractory elements toward the margins, and frequent rimming by enstatite are taken as evidence of interaction of the IOG with the gas as stand-alone objects. This indicates that they were splashed out of chondrules when these were still partially molten. CaO-rich refractory forsterites, which are restricted to $Delta^{17}O < -4permil$ likely escaped equilibration at lower temperatures because of their large size and possibly quicker quenching. The IOG thus bear witness to frequent collisions in the chondrule-forming regions.
The valence of iron has been used in terrestrial studies to trace the hydrolysis of primary silicate rocks. Here, we use a similar approach to characterize the secondary processes, namely thermal metamorphism and aqueous alteration, that have affecte d carbonaceous chondrites. X-ray absorption near-edge structure spectroscopy at the Fe-K- edge was performed on a series of 36 CM, 9 CR, 10 CV, and 2 CI chondrites. Among the four carbonaceous chondrites groups studied, a correlation between the iron oxidation index (IOI = [2 ((Fe2+) + 3(Fe3+))/FeTOT) and the hydrogen content is observed. However, within the CM group, for which a progressive alteration sequence has been defined, a conversion of Fe3+ to Fe2+ is observed with increasing degree of aqueous alteration. This reduction of iron can be explained by an evolution in the mineralogy of the secondary phases. In the case of the few CM chondrites that experienced some thermal metamorphism, in addition to aqueous alteration, a redox memory of the aqueous alteration is present: a significant fraction of 3+ 2+ 0 Fe is present, together with Fe and sometimes Fe. From our data set, the CR chondrites show a wider range of IOI from 1.5 to 2.5. In all considered CR chondrites, the three oxidation states of iron coexist. Even in the least-altered CR chondrites, the fraction of Fe3+ can be high (30% for MET 00426). This observation confirms that oxidized iron has been integrated during formation of fine-grained amorphous material in the matrix. Last, the IOI of CV chondrites does not reflect the reduced/oxidized classification based on metal and magnetite proportions, but is strongly correlated with petrographic types. The valence of iron in CV chondrites therefore appears to be most closely related to thermal history, rather than aqueous alteration, even if these processes can occur together .
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا