ﻻ يوجد ملخص باللغة العربية
We introduce intrinsic interpolatory bases for data structured on graphs and derive properties of those bases. Polyharmonic Lagrange functions are shown to satisfy exponential decay away from their centers. The decay depends on the density of the zeros of the Lagrange function, showing that they scale with the density of the data. These results indicate that Lagrange-type bases are ideal building blocks for analyzing data on graphs, and we illustrate their use in kernel-based machine learning applications.
Lagrange functions are localized bases that have many applications in signal processing and data approximation. Their structure and fast decay make them excellent tools for constructing approximations. Here, we propose perturbations of Lagrange funct
A generalized spline on a graph $G$ with edges labeled by ideals in a ring $R$ consists of a vertex-labeling by elements of $R$ so that the labels on adjacent vertices $u, v$ differ by an element of the ideal associated to the edge $uv$. We study the
In this paper, we study how to quickly compute the <-minimal monomial interpolating basis for a multivariate polynomial interpolation problem. We address the notion of reverse reduced basis of linearly independent polynomials and design an algorithm
Differentiable real function reproducing primes up to a given number and having a differentiable inverse function is constructed. This inverse function is compared with the Riemann-Von Mangoldt exact expression for the number of primes not exceeding
In this paper, we demonstrate the construction of generalized Rough Polyhamronic Splines (GRPS) within the Bayesian framework, in particular, for multiscale PDEs with rough coefficients. The optimal coarse basis can be derived automatically by the ra