ﻻ يوجد ملخص باللغة العربية
We study the detection and delay performance impacts of a feature-based physical layer authentication (PLA) protocol in mission-critical machine-type communication (MTC) networks. The PLA protocol uses generalized likelihood-ratio testing based on the line-of-sight (LOS), single-input multiple-output channel-state information in order to mitigate impersonation attempts from an adversary node. We study the detection performance, develop a queueing model that captures the delay impacts of erroneous decisions in the PLA (i.e., the false alarms and missed detections), and model three different adversary strategies: data injection, disassociation, and Sybil attacks. Our main contribution is the derivation of analytical delay performance bounds that allow us to quantify the delay introduced by PLA that potentially can degrade the performance in mission-critical MTC networks. For the delay analysis, we utilize tools from stochastic network calculus. Our results show that with a sufficient number of receive antennas (approx. 4-8) and sufficiently strong LOS components from legitimate devices, PLA is a viable option for securing mission-critical MTC systems, despite the low latency requirements associated to corresponding use cases. Furthermore, we find that PLA can be very effective in detecting the considered attacks, and in particular, it can significantly reduce the delay impacts of disassociation and Sybil attacks.
Supporting reliable and seamless wireless connectivity for unmanned aerial vehicles (UAVs) has recently become a critical requirement to enable various different use cases of UAVs. Due to their widespread deployment footprint, cellular networks can s
Consider impersonation attack by an active malicious nano node (Eve) on a diffusion based molecular communication (DbMC) system---Eve transmits during the idle slots to deceive the nano receiver (Bob) that she is indeed the legitimate nano transmitte
A novel method and protocol establishing common secrecy based on physical parameters between two users is proposed. The four physical parameters of users are their clock frequencies, their relative clock phases and the distance between them. The prot
Network-connected unmanned aerial vehicle (UAV) communications is a common solution to achieve high-rate image transmission. The broadcast nature of these wireless networks makes this communication vulnerable to eavesdropping. This paper considers th
The Trusted Platform Module (TPM) version 2.0 provides a two-phase key exchange primitive which can be used to implement three widely-standardized authenticated key exchange protocols: the Full Unified Model, the Full MQV, and the SM2 key exchange pr