ترغب بنشر مسار تعليمي؟ اضغط هنا

Strings on warped AdS$_3$ via $Tbar{J}$ deformations

110   0   0.0 ( 0 )
 نشر من قبل Luis Apolo
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a toy model of the Kerr/CFT correspondence using string theory on AdS$_3 times S^3$. We propose a single trace irrelevant deformation of the dual CFT generated by a vertex operator with spacetime dimensions (2,1). This operator shares the same quantum numbers as the integrable $Tbar{J}$ deformation of two-dimensional CFTs where $bar{J}$ is a chiral $U(1)$ current. We show that the deformation is marginal on the worldsheet and that the target spacetime is deformed to null warped AdS$_3$ upon dimensional reduction. We also calculate the spectrum of the deformed theory on the cylinder and compare it to the field theory analysis of $Tbar{J}$-deformed CFTs.



قيم البحث

اقرأ أيضاً

We explore the $Jbar{T}$ and $Tbar{J}$ deformations of two-dimensional field theories possessing $mathcal N=(0,1),(1,1)$ and $(0,2)$ supersymmetry. Based on the stress-tensor and flavor current multiplets, we construct various bilinear supersymmetric primary operators that induce the $Jbar{T}/Tbar{J}$ deformation in a manifestly supersymmetric way. Moreover, their supersymmetric descendants are shown to agree with the conventional $Jbar T /Tbar J$ operator on-shell. We also present some examples of $Jbar T /Tbar J$ flows arising from the supersymmetric deformation of free theories. Finally, we observe that all the deformation operators fit into a general pattern which generalizes the Smirnov-Zamolodchikov type composite operators.
We consider the timelike version of Warped Anti-de Sitter space (WAdS), which corresponds to the three-dimensional section of the G{o}del solution of four-dimensional cosmological Einstein equations. This geometry presents closed timelike curves (CTC s), which are inherited from its four-dimensional embedding. In three dimensions, this type of solutions can be supported without matter provided the graviton acquires mass. Here, among the different ways to consistenly give mass to the graviton in three dimensions, we consider the parity-even model known as New Massive Gravity (NMG). In the bulk of timelike WAdS$_{3}$ space, we introduce defects that, from the three-dimensional point of view, represent spinning massive particle-like objects. For this type of sources, we investigate the definition of quasi-local gravitational energy as seen from infinity, far beyond the region where the CTCs appear. We also consider the covariant formalism applied to NMG to compute the mass and the angular momentum of spinning particle-like defects, and compare the result with the one obtained by means of the quasi-local stress-tensor. We apply these methods to special limits in which the WAdS$_3$ solutions coincide with locally AdS$_3$ and locally AdS$_{2}times mathbb{R}$ spaces. Finally, we make some comments about the asymptotic symmetry algebra of asymptotically WAdS$_3$ spaces in NMG.
We investigate the $Tbar{T}$ deformations of two-dimensional supersymmetric quantum field theories. More precisely, we show that, by using the conservation equations for the supercurrent multiplet, the $Tbar{T}$ deforming operator can be constructed as a supersymmetric descendant. Here we focus on $mathcal{N}=(1,0)$ and $mathcal{N}=(1,1)$ supersymmetry. As an example, we analyse in detail the $Tbar{T}$ deformation of a free $mathcal{N}=(1,0)$ supersymmetric action. We also argue that the link between $Tbar{T}$ and string theory can be extended to superstrings: by analysing the light-cone gauge fixing for superstrings in flat space, we show the correspondence of the string action to the $Tbar{T}$ deformation of a free theory of eight $mathcal{N}=(1,1)$ scalar multiplets on the nose. We comment on how these constructions relate to the geometrical interpretations of $Tbar{T}$ deformations that have recently been discussed in the literature.
We compute the ultraviolet divergences of holographic subregion complexity for the left and right factors of the thermofield double state in warped AdS$_3$ black holes, both for the action and the volume conjectures. Besides the linear divergences, w hich are also present in the BTZ black hole, additional logarithmic divergences appear. For the action conjecture, these log divergences are not affected by the arbitrarity in the length scale associated with the counterterm needed to ensure reparameterization invariance. We find that the subregion action complexity obeys the superadditivity property for the thermofield double in warped AdS$_3$, independently from the action counterterm coefficient. We study the temperature dependence of subregion complexity at constant angular momentum and we find that it is correlated with the sign of the specific heat.
We consider the most general set of integrable deformations extending the $Tbar{T}$ deformation of two-dimensional relativistic QFTs. They are CDD deformations of the theorys factorised S-matrix related to the higher-spin conserved charges. Using a m irror version of the generalised Gibbs ensemble, we write down the finite-volume expectation value of the higher-spin charges, and derive a generalised flow equation that every charge must obey under a generalised $Tbar{T}$ deformation. This also reproduces the known flow equations on the nose.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا