ترغب بنشر مسار تعليمي؟ اضغط هنا

On Guays evaluation map for affine Yangians

60   0   0.0 ( 0 )
 نشر من قبل Ryosuke Kodera
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Ryosuke Kodera




اسأل ChatGPT حول البحث

We give a detailed proof of the existence of evaluation map for affine Yangians of type A to clarify that it needs an assumption on parameters. This map was first found by Guay but a proof of its well-definedness and the assumption have not been written down in the literature. We also determine the highest weights of evaluation modules defined as the pull-back of integrable highest weight modules of the affine Lie algebra $hat{mathfrak{gl}}_N$ by the evaluation map.



قيم البحث

اقرأ أيضاً

We construct algebra homomorphisms from affine Yangians to the current algebras of rectangular $W$-algebras both in type A. The construction is given via the coproduct and the evaluation map for the affine Yangians. As a consequence, we show that par abolic inductions for representations of the rectangular $W$-algebras can be regarded as tensor product representations of the affine Yangians under the homomorphisms. The same method is applicable also to the super setting.
86 - Ryosuke Kodera 2018
We study braid group actions on Yangians associated with symmetrizable Kac-Moody Lie algebras. As an application, we focus on the affine Yangian of type A and use the action to prove that the image of the evaluation map contains the diagonal Heisenberg algebra inside $hat{mathfrak{gl}}_N$.
146 - Jie Xiao , Han Xu , Minghui Zhao 2021
Let $textbf{U}^+$ be the positive part of the quantum group $textbf{U}$ associated with a generalized Cartan matrix. In the case of finite type, Lusztig constructed the canonical basis $textbf{B}$ of $textbf{U}^+$ via two approaches. The first one is an elementary algebraic construction via Ringel-Hall algebra realization of $textbf{U}^+$ and the second one is a geometric construction. The geometric construction of canonical basis can be generalized to the cases of all types. The generalization of the elementary algebraic construction to affine type is an important problem. We give several main results of algebraic constructions to the affine canonical basis in this ariticle. These results are given by Beck-Nakajima, Lin-Xiao-Zhang, Xiao-Xu-Zhao, respectively.
149 - Ryosuke Kodera 2015
The localized equivariant homology of the quiver variety of type $A_{N-1}^{(1)}$ can be identified with the level one Fock space by assigning a normalized torus fixed point basis to certain symmetric functions, Jack($mathfrak{gl}_N$) symmetric functi ons introduced by Uglov. We show that this correspondence is compatible with actions of two algebras, the Yangian for $mathfrak{sl}_N$ and the affine Lie algebra $hat{mathfrak{sl}}_N$, on both sides. Consequently we obtain affine Yangian action on the Fock space.
Let $U_q(mathfrak{g})$ be a quantum affine algebra of arbitrary type and let $mathcal{C}_{mathfrak{g}}$ be Hernandez-Leclercs category. We can associate the quantum affine Schur-Weyl duality functor $F_D$ to a duality datum $D$ in $mathcal{C}_{mathfr ak{g}}$. We introduce the notion of a strong (complete) duality datum $D$ and prove that, when $D$ is strong, the induced duality functor $F_D$ sends simple modules to simple modules and preserves the invariants $Lambda$ and $Lambda^infty$ introduced by the authors. We next define the reflections $mathcal{S}_k$ and $mathcal{S}^{-1}_k$ acting on strong duality data $D$. We prove that if $D$ is a strong (resp. complete) duality datum, then $mathcal{S}_k(D)$ and $mathcal{S}_k^{-1}(D)$ are also strong (resp. complete ) duality data. We finally introduce the notion of affine cuspidal modules in $mathcal{C}_{mathfrak{g}}$ by using the duality functor $F_D$, and develop the cuspidal module theory for quantum affine algebras similarly to the quiver Hecke algebra case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا