ﻻ يوجد ملخص باللغة العربية
It has recently been reported [Phys. Rev. Lett. 117, 162502 (2016)] that (d, p) cross sections can be very sensitive to the n-p interactions used in the adiabatic treatment of deuteron breakup with nonlocal nucleon-target optical potentials. To understand to what extent this sensitivity could originate in the inaccuracy of the adiabatic approximation we have developed a leading-order local- equivalent continuum-discretized coupled-channel model that accounts for non-adiabatic effects in the presence of nonlocality of nucleon optical potentials. We have applied our model to the astro- physically relevant reaction $^{26m}$Al$(d, p) ^{27}$Al using two different n-p potentials associated with the lowest and the highest n-p kinetic energy in the short-range region of their interaction, respectively. Our calculations reveal a significant reduction of the sensitivity to the high n-p momenta thus confirming that it is mostly associated with theoretical uncertainties of the adiabatic approximation itself. The non-adiabatic effects in the presence of nonlocality were found to be stronger than those in the case of the local optical potentials. These results argue for extending the analysis of the $(d, p)$ reactions, measured for spectroscopic studies, beyond the adiabatic approximation.
The adiabatic distorted wave approximation (ADWA) is widely used by the nuclear community to analyse deuteron stripping ($d$,$p$) experiments. It provides a quick way to take into account an important property of the reaction mechanism: deuteron brea
Total reaction cross sections of deuteron, $sigma_d^{rm R}$, are calculated by a microscopic three-body reaction model. The reaction model has no free adjustable parameter and applicable to reactions at various deuteron incident energies $E_d$ and wi
The finite range adiabatic wave approximation provides a practical method to analyze (d,p) or (p,d) reactions, however until now the level of accuracy obtained in the description of the reaction dynamics has not been determined. In this work, we perf
Theoretical models of the (d,p) reaction are exploited for both nuclear astrophysics and spectroscopic studies in nuclear physics. Usually, these reaction models use local optical model potentials to describe the nucleon- and deuteron-target interact
The role of the short-range part (repulsive core) of the proton-neutron ($pn$) potential in deuteron elastic breakup processes is investigated. A simplified one-range Gaussian potential and the Argonne V4 (AV4) central potential are adopted in the co