ﻻ يوجد ملخص باللغة العربية
Mobile application security has been one of the major areas of security research in the last decade. Numerous application analysis tools have been proposed in response to malicious, curious, or vulnerable apps. However, existing tools, and specifically, static analysis tools, trade soundness of the analysis for precision and performance, and are hence soundy. Unfortunately, the specific unsound choices or flaws in the design of these tools are often not known or well-documented, leading to a misplaced confidence among researchers, developers, and users. This paper proposes the Mutation-based soundness evaluation ($mu$SE) framework, which systematically evaluates Android static analysis tools to discover, document, and fix, flaws, by leveraging the well-founded practice of mutation analysis. We implement $mu$SE as a semi-automated framework, and apply it to a set of prominent Android static analysis tools that detect private data leaks in apps. As the result of an in-depth analysis of one of the major tools, we discover 13 undocumented flaws. More importantly, we discover that all 13 flaws propagate to tools that inherit the flawed tool. We successfully fix one of the flaws in cooperation with the tool developers. Our results motivate the urgent need for systematic discovery and documentation of unsound choices in soundy tools, and demonstrate the opportunities in leveraging mutation testing in achieving this goal.
Mobile application security has been a major area of focus for security research over the course of the last decade. Numerous application analysis tools have been proposed in response to malicious, curious, or vulnerable apps. However, existing tools
This demo paper presents the technical details and usage scenarios of $mu$SE: a mutation-based tool for evaluating security-focused static analysis tools for Android. Mutation testing is generally used by software practitioners to assess the robustne
Software debloating is an emerging field of study aimed at improving the security and performance of software by removing excess library code and features that are not needed by the end user (called bloat). Software bloat is pervasive, and several de
Android is present in more than 85% of mobile devices, making it a prime target for malware. Malicious code is becoming increasingly sophisticated and relies on logic bombs to hide itself from dynamic analysis. In this paper, we perform a large scale
Knowledge flow analysis offers a simple and flexible way to find flaws in security protocols. A protocol is described by a collection of rules constraining the propagation of knowledge amongst principals. Because this characterization corresponds clo