ﻻ يوجد ملخص باللغة العربية
A combination of archival multi-frequency radio observations with narrow-band HAlpha optical imagery and new confirmatory optical spectroscopy have shown that candidate supernova remnant G6.31+0.54 can now be confirmed as part of a Galactic supernova remnant (SNR). It has non-thermal emission, an optical emission line spectrum displaying shock excitation and standard SNR line ratios, fine filamentary structures in HAlpha typical of optical remnants and closely overlapping radio and optical footprints. An X-ray ROSAT source 1RXS J175752.1-231105 was also found that matches the radio and optical emission though a definite association is not proven. Nevertheless, taken together, all these observed properties point to a clear SNR identification for this source. We provide a rough estimate for the kinematic distance to G6.31+0.54 of ~4.5kpc. The detected optical filaments are some ~10arcminutes in extent (or about 13 pc at the assumed distance). However, as only a partial arcuate structure of the SNR can be seen (and not a full shell) the full angular extent of the SNR is unclear. Hence the physical extent of the observed partial shell is also difficult to estimate. If we assume an approximately circular shell then a conservative fit to the optical arc shaped filaments gives an angular diameter of ~20 arcminutes corresponding to a physical diameter of ~26 pc that shows this to be an evolved remnant.
We present a multi-wavelength study of the radio source G296.7-0.9. This source has a bilateral radio morphology, a radio spectral index of -0.5 +/- 0.1, sparse patches of linear polarisation, and thermal X-rays with a bright arc near the radio bound
Deep H$alpha$ images of a faint emission complex 4.0 x 5.5 degrees in angular extent and located far off the Galactic plane at l = 70.0 degrees, b=-21.5 degrees reveal numerous thin filaments suggestive of a supernova remnants shock emission. Low dis
We present complicated dust structures within multiple regions of the candidate supernova remnant (SNR) the `Tornado (G357.7-0.1) using observations with Spitzer and Herschel. We use Point Process Mapping, PPMAP, to investigate the distribution of du
During a detailed search for optical counterparts of known Galactic supernova remnants (SNRs) using the Anglo Australian Observatory/United Kingdom Schmidt Telescope (AAO/UKST) HAlpha survey of the southern Galactic plane we have found characteristic
G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of about 1900, and most likely located near the Galactic Center. Only the outermost ejecta layers with free-expansion velocities larger t