ﻻ يوجد ملخص باللغة العربية
Quantum correlation and its measurement are essential in exploring fundamental quantum physics problems and developing quantum enhanced technologies. Quantum correlation may be generated and manipulated in different spaces, which demands different measurement approaches corresponding to position, time, frequency and polarization of quantum particles. In addition, after early proof-of-principle demonstrations, it is of great demand to measure quantum correlation in a Hilbert space large enough for real quantum applications. When the number of modes goes up to several hundreds, it becomes economically unfeasible for single-mode addressing and also extremely challenging for processing correlation events with hardware. Here we present a general and large-scale measurement approach of Correlation on Spatially-mapped Photon-Level Image (COSPLI). The quantum correlations in other spaces are mapped into the position space and are captured by single-photon-sensitive imaging system. Synthetic methods are developed to suppress noises so that single-photon registrations can be faithfully identified in images. We eventually succeed in retrieving all the correlations with big-data technique from tens of millions of images. We demonstrate our COSPLI by measuring the joint spectrum of parametric down-conversion photons. Our approach provides an elegant way to observe the evolution results of large-scale quantum systems, representing an innovative and powerful tool added into the platform for boosting quantum information processing.
We present a technique based on high resolution imaging to measure the absolute temperature and the heating rate of a single ion trapped at the focus of a deep parabolic mirror. We collect the fluorescence light scattered by the ion during laser cool
Low-decoherence regime plays a key role in constructing multi-particle quantum systems and has therefore been constantly pursued in order to build quantum simulators and quantum computers in a scalable fashion. Quantum error correction and quantum to
Topology manifesting in many branches of physics deepens our understanding on state of matters. Topological photonics has recently become a rapidly growing field since artificial photonic structures can be well designed and constructed to support top
Due to its specificity, fluorescence microscopy (FM) has become a quintessential imaging tool in cell biology. However, photobleaching, phototoxicity, and related artifacts continue to limit FMs utility. Recently, it has been shown that artificial in
The development of spectroscopic techniques able to detect and verify quantum coherence is a goal of increasing importance given the rapid progress of new quantum technologies, the advances in the field of quantum thermodynamics, and the emergence of