ﻻ يوجد ملخص باللغة العربية
The periods of magnetic activity cycles in the Sun and solar-type stars do not exhibit a simple or even single trend with respect to rotation rate or luminosity. Dynamo models can be used to interpret this diversity, and can ultimately help us understand why some solar-like stars do not exhibit a magnetic cycle, whereas some do, and for the latter what physical mechanisms set their magnetic cycle period. Three-dimensional non-linear magnetohydrodynamical simulations present the advantage of having only a small number of tunable parameters, and produce in a dynamically self-consistent manner the flows and the dynamo magnetic fields pervading stellar interiors. We conducted a series of such simulations within the EULAG-MHD framework, varying the rotation rate and luminosity of the modeled solar-like convective envelopes. We find decadal magnetic cycles when the Rossby number near the base of the convection zone is moderate (typically between 0.25 and 1). Secondary, shorter cycles located at the top of the convective envelope close to the equator are also observed in our numerical experiments, when the local Rossby number is lower than 1. The deep-seated dynamo sustained in these numerical experiments is fundamentally non-linear, in that it is the feedback of the large-scale magnetic field on the large-scale differential rotation that sets the magnetic cycle period. The cycle period is found to decrease with the Rossby number, which offers an alternative theoretical explanation to the variety of activity cycles observed in solar-like stars.
To explore the physics of large-scale flows in solar-like stars, we perform 3D anelastic simulations of rotating convection for global models with stratification resembling the solar interior. The numerical method is based on an implicit large-eddy s
The stellar magnetic field plays a crucial role in the star internal mechanisms, as in the interactions with its environment. The study of starspots provides information about the stellar magnetic field, and can characterise the cycle. Moreover, the
We present results from four convectively-driven stellar dynamo simulations in spherical wedge geometry. All of these simulations produce cyclic and migrating mean magnetic fields. Through detailed comparisons we show that the migration direction can
A sample of 19 solar-type stars, probing masses between 0.6 and 1.4 solar mass and rotation periods between 3.4 and 43 days, was regularly observed using the NARVAL spectropolarimeter at Telescope Bernard Lyot (Pic du Midi, France) between 2007 and 2
Aims. We aim studying the use of cross-correlation techniques to infer the frequency shifts induced by changing magnetic fields in the p-mode frequencies and provide precise estimation of the error bars. Methods. This technique and the calculation of