ﻻ يوجد ملخص باللغة العربية
Balanced homodyne detector (BHD) that can measure the field quadratures of coherent states has been widely used in a range of quantum information technologies. Generally, the BHD tends to suffer from narrow bands and an expanding bandwidth behavior usually traps into a compromise with the gain, electronic noise, and quantum to classical noise ratio, etc. In this paper, we design and construct a wideband BHD based on radio frequency and integrated circuit technology. Our BHD shows bandwidth behavior up to 1.2 GHz and its quantum to classical noise ratio is around 18 dB. Simultaneously, the BHD has a linear performance with a gain of 4.86k and its common mode rejection ratio has also been tested as 57.9 dB. With this BHD, the secret key rate of continuous-variable quantum key distribution system has a potential to achieve 66.55 Mbps and 2.87 Mbps respectively at the transmission distance of 10 km and 45 km. Besides, with this BHD, the generation rate of quantum random number generator could reach up to 6.53Gbps.
We present the characterization of a novel balanced homodyne detector operating in the mid-infrared. The challenging task of revealing non-classicality in mid-infrared light, e.~g. in quantum cascade lasers emission, requires a high-performance detec
We report an experimental quantum key distribution that utilizes balanced homodyne detection, instead of photon counting, to detect weak pulses of coherent light. Although our scheme inherently has a finite error rate, it allows high-efficiency detec
We study the distribution of quantum steerability for continuous variables between two causally disconnected open charts in de Sitter space. It is shown that quantum steerability suffers from sudden death in de Sitter space, which is quite different
The fidelity of a quantum transformation is strongly linked with the prior partial information of the state to be transformed. We illustrate this interesting point by proposing and demonstrating the superior cloning of coherent states with prior part
In the framework of the ATTRACT-uRANIA project, funded by the European Community, we are developing an innovative neutron imaging detector based on micro-Resistive WELL ($mu$ -RWELL) technology. The $mu$ -RWELL, based on the resistive detector concep