ترغب بنشر مسار تعليمي؟ اضغط هنا

FBI-Pose: Towards Bridging the Gap between 2D Images and 3D Human Poses using Forward-or-Backward Information

104   0   0.0 ( 0 )
 نشر من قبل Xiaoguang Han
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Although significant advances have been made in the area of human poses estimation from images using deep Convolutional Neural Network (ConvNet), it remains a big challenge to perform 3D pose inference in-the-wild. This is due to the difficulty to obtain 3D pose groundtruth for outdoor environments. In this paper, we propose a novel framework to tackle this problem by exploiting the information of each bone indicating if it is forward or backward with respect to the view of the camera(we term it Forwardor-Backward Information abbreviated as FBI). Our method firstly trains a ConvNet with two branches which maps an image of a human to both the 2D joint locations and the FBI of bones. These information is further fed into a deep regression network to predict the 3D positions of joints. To support the training, we also develop an annotation user interface and labeled such FBI for around 12K in-the-wild images which are randomly selected from MPII (a public dataset of 2D pose annotation). Our experimental results on the standard benchmarks demonstrate that our approach outperforms state-of-the-art methods both qualitatively and quantitatively.



قيم البحث

اقرأ أيضاً

While there has been a success in 2D human pose estimation with convolutional neural networks (CNNs), 3D human pose estimation has not been thoroughly studied. In this paper, we tackle the 3D human pose estimation task with end-to-end learning using CNNs. Relative 3D positions between one joint and the other joints are learned via CNNs. The proposed method improves the performance of CNN with two novel ideas. First, we added 2D pose information to estimate a 3D pose from an image by concatenating 2D pose estimation result with the features from an image. Second, we have found that more accurate 3D poses are obtained by combining information on relative positions with respect to multiple joints, instead of just one root joint. Experimental results show that the proposed method achieves comparable performance to the state-of-the-art methods on Human 3.6m dataset.
There has been a debate on whether to use 2D or 3D deep neural networks for volumetric organ segmentation. Both 2D and 3D models have their advantages and disadvantages. In this paper, we present an alternative framework, which trains 2D networks on different viewpoints for segmentation, and builds a 3D Volumetric Fusion Net (VFN) to fuse the 2D segmentation results. VFN is relatively shallow and contains much fewer parameters than most 3D networks, making our framework more efficient at integrating 3D information for segmentation. We train and test the segmentation and fusion modules individually, and propose a novel strategy, named cross-cross-augmentation, to make full use of the limited training data. We evaluate our framework on several challenging abdominal organs, and verify its superiority in segmentation accuracy and stability over existing 2D and 3D approaches.
The end-to-end Human Mesh Recovery (HMR) approach has been successfully used for 3D body reconstruction. However, most HMR-based frameworks reconstruct human body by directly learning mesh parameters from images or videos, while lacking explicit guid ance of 3D human pose in visual data. As a result, the generated mesh often exhibits incorrect pose for complex activities. To tackle this problem, we propose to exploit 3D pose to calibrate human mesh. Specifically, we develop two novel Pose Calibration frameworks, i.e., Serial PC-HMR and Parallel PC-HMR. By coupling advanced 3D pose estimators and HMR in a serial or parallel manner, these two frameworks can effectively correct human mesh with guidance of a concise pose calibration module. Furthermore, since the calibration module is designed via non-rigid pose transformation, our PC-HMR frameworks can flexibly tackle bone length variations to alleviate misplacement in the calibrated mesh. Finally, our frameworks are based on generic and complementary integration of data-driven learning and geometrical modeling. Via plug-and-play modules, they can be efficiently adapted for both image/video-based human mesh recovery. Additionally, they have no requirement of extra 3D pose annotations in the testing phase, which releases inference difficulties in practice. We perform extensive experiments on the popular bench-marks, i.e., Human3.6M, 3DPW and SURREAL, where our PC-HMR frameworks achieve the SOTA results.
Convolutional Neural Network based approaches for monocular 3D human pose estimation usually require a large amount of training images with 3D pose annotations. While it is feasible to provide 2D joint annotations for large corpora of in-the-wild ima ges with humans, providing accurate 3D annotations to such in-the-wild corpora is hardly feasible in practice. Most existing 3D labelled data sets are either synthetically created or feature in-studio images. 3D pose estimation algorithms trained on such data often have limited ability to generalize to real world scene diversity. We therefore propose a new deep learning based method for monocular 3D human pose estimation that shows high accuracy and generalizes better to in-the-wild scenes. It has a network architecture that comprises a new disentangled hidden space encoding of explicit 2D and 3D features, and uses supervision by a new learned projection model from predicted 3D pose. Our algorithm can be jointly trained on image data with 3D labels and image data with only 2D labels. It achieves state-of-the-art accuracy on challenging in-the-wild data.
This study considers the 3D human pose estimation problem in a single RGB image by proposing a conditional random field (CRF) model over 2D poses, in which the 3D pose is obtained as a byproduct of the inference process. The unary term of the propose d CRF model is defined based on a powerful heat-map regression network, which has been proposed for 2D human pose estimation. This study also presents a regression network for lifting the 2D pose to 3D pose and proposes the prior term based on the consistency between the estimated 3D pose and the 2D pose. To obtain the approximate solution of the proposed CRF model, the N-best strategy is adopted. The proposed inference algorithm can be viewed as sequential processes of bottom-up generation of 2D and 3D pose proposals from the input 2D image based on deep networks and top-down verification of such proposals by checking their consistencies. To evaluate the proposed method, we use two large-scale datasets: Human3.6M and HumanEva. Experimental results show that the proposed method achieves the state-of-the-art 3D human pose estimation performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا