ﻻ يوجد ملخص باللغة العربية
Small animal Positron Emission Tomography (PET) is dedicated to small animal imaging. Animals used in experiments, such as rats and monkeys, are often much smaller than human bodies, which requires higher position and energy precision of the PET imaging system. Besides, Flexibility, high efficiency are also the major demands of a practical PET system. These requires a high-quality analog front-end and a digital signal processing logic with high efficiency and compatibility of multiple data processing modes. The digital signal processing logic of the small animal PET system presented in this paper implements 32-channel signal processing in a single Xilinx Artix-7 family of Field-Programmable Gate Array (FPGA). The logic is designed to support three online modes which are regular package mode, flood map and energy spectrum histogram. Several functions are integrated, including two-dimensional (2D) raw position calculation, crystal identification, events filtering, etc. Besides, a series of online corrections are also integrated, such as photon peak correction to 511 keV and timing offset correction with crystal granularity. A Gigabit Ethernet interface is utilized for data transfer, Look-Up Tables (LUTs) configuration and commands issuing. The pipe-line logic processes the signals at 125 MHz with a rate of 1,000,000 events/s. A series of initial tests are conducted. The results indicate that the digital processing logic achieves the expectations.
Small animal Positron Emission Tomography (PET) is dedicated to small animal imaging, which requires high position and energy precision, as well as good flexibility and efficiency of the electronics. This paper presents the design of a digital signal
Position Emission Tomography (PET) is an advanced clinical diagnostic imaging technique for nuclear medicine. Small animal PET is increasingly uesd for studying the animal model of disease, new drugs and new therapies. A prototype of Singles Processi
This paper presents a field-programmable gate array (FPGA) design of a segmentation algorithm based on convolutional neural network (CNN) that can process light detection and ranging (LiDAR) data in real-time. For autonomous vehicles, drivable region
The behavior of a cyber-physical system (CPS) is usually defined in terms of the input and output signals processed by sensors and actuators. Requirements specifications of CPSs are typically expressed using signal-based temporal properties. Expressi
A fully digital beam position and phase measurement (BPPM) system was designed for the linear accelerator (LINAC) in Accelerator Driven Sub-critical System (ADS) in China. Phase information is obtained from the summed signals from four pick-ups of th