ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxies Probing Galaxies in PRIMUS - II. The Coherence Scale of the Cool Circumgalactic Medium

156   0   0.0 ( 0 )
 نشر من قبل Kate Rubin
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kate H. R. Rubin




اسأل ChatGPT حول البحث

The circumgalactic medium (CGM) close to ~L* star-forming galaxies hosts strong MgII 2796 absorption (with equivalent width W_2796>0.1 Ang) with a near-unity covering fraction. To characterize the spatial coherence of this absorption, we analyze the W_2796 distribution in the CGM of 27 star-forming galaxies detected in deep spectroscopy of bright background (b/g) galaxies first presented in Rubin et al. (2018). The sample foreground (f/g) systems have redshifts 0.35<z<0.8 and stellar masses 9.1<log M_*/M_sun<11.1, and the b/g galaxies provide spatially-extended probes with half-light radii 1.0 kpc<R_eff<7.9 kpc at projected distances R_perp<50 kpc. Our analysis also draws on literature W_2796 values measured in b/g QSO spectroscopy probing the halos of f/g galaxies with a similar range in M_* at z ~ 0.25. By making the assumptions that (1) samples of like galaxies exhibit similar circumgalactic W_2796 distributions; and that (2) the quantity log W_2796 has a Gaussian distribution with a dispersion that is constant with M_* and R_perp, we use this QSO-galaxy pair sample to construct a model for the log W_2796 distribution in the CGM. We then demonstrate the dependence of this distribution on the ratio of the surface area of the b/g probe to the projected absorber surface area (x_A=A_G/A_A), finding that distributions which assume x_A>=15 are statistically inconsistent with that observed toward our b/g galaxies at a 95% confidence level. This limit, in combination with the b/g galaxy sizes, requires that the length scale over which W_2796 does not vary (the coherence scale of MgII absorption) is l_A>1.9 kpc. This novel constraint on the morphology of cool, photoionized structures in the inner CGM suggests that either these structures each extend over kiloparsec scales, or that the numbers and velocity dispersion of these structures are spatially correlated over the same scales.

قيم البحث

اقرأ أيضاً

148 - Kate H. R. Rubin 2017
Spectroscopy of background QSO sightlines passing close to foreground galaxies is a potent technique for studying the circumgalactic medium (CGM). QSOs are effectively point sources, however, limiting their potential to constrain the size of circumga lactic gaseous structures. Here we present the first large Keck/LRIS and VLT/FORS2 spectroscopic survey of bright (B_AB < 22.3) background galaxies whose lines of sight probe MgII 2796, 2803 absorption from the CGM around close projected foreground galaxies at transverse distances 10 kpc < R_perp < 150 kpc. Our sample of 72 projected pairs, drawn from the PRIsm MUlti-object Survey (PRIMUS), includes 48 background galaxies which do not host bright AGN, and both star-forming and quiescent foreground galaxies with stellar masses 9.0 < log M_*/M_sun < 11.2 at redshifts 0.35 < z_f/g < 0.8. We detect MgII absorption associated with these foreground galaxies with equivalent widths 0.25 Ang < W_2796 < 2.6 Ang at >2sigma significance in 20 individual background sightlines passing within R_perp < 50 kpc, and place 2sigma upper limits on W_2796 of <0.5 Ang in an additional 11 close sightlines. Within R_perp < 50 kpc, W_2796 is anticorrelated with R_perp, consistent with analyses of MgII absorption detected along background QSO sightlines. Subsamples of these foreground hosts divided at log M_*/M_sun = 9.9 exhibit statistically inconsistent W_2796 distributions at 30 kpc < R_perp < 50 kpc, with the higher-M_* galaxies yielding a larger median W_2796 by 0.9 Ang. Finally, we demonstrate that foreground galaxies with similar stellar masses exhibit the same median W_2796 at a given R_perp to within <0.2 Ang toward both background galaxies and toward QSO sightlines drawn from the literature. Analysis of these datasets constraining the spatial coherence scale of circumgalactic MgII absorption is presented in a companion paper.
We survey the incidence and absorption strength of the metal-line transitions CII 1334 and CIV from the circumgalactic medium (CGM) surrounding z~2 quasars, which act as signposts for massive dark matter halos M_halo~10^12.5 Msun. On scales of the vi rial radius (Mvir~160kpc), we measure a high covering fraction fC=0.73+/-0.10 to strong CII absorption (rest equivalent width W1334>0.2A), implying a massive reservoir of cool (T~10^4K) metal enriched gas. We conservatively estimate a metal mass exceeding 10^8 Msun. We propose these metals trace enrichment of the incipient intragroup/intracluster medium that these halos eventually inhabit. This cool CGM around quasars is the pinnacle amongst galaxies observed at all epochs, as regards covering fraction and average equivalent width of HI Lya and low-ion metal absorption. We argue that the properties of this cool CGM primarily reflect the halo mass, and that other factors such as feedback, star-formation rate, and accretion from the intergalactic medium are secondary. We further estimate, that the CGM of massive, z~2 galaxies accounts for the majority of strong MgII absorption along random quasar sightlines. Lastly, we detect an excess of strong CIV absorption (W1548>0.3A) over random incidence to 1Mpc physical impact parameter and measure the quasar-CIV cross-correlation function: xi(r)=(r/r0)^-g with r0 = 7.5Mpc and g=1.7. Consistent with previous work on larger scales, we infer that this highly ionized CIV gas traces massive (10^12 Msun) halos.
We present Hubble Space Telescope far-UV spectra of 4 QSOs whose sightlines pass through the halo of NGC 1097 at impact parameters of 48 -165 kpc. NGC 1097 is a nearby spiral galaxy that has undergone at least two minor merger events, but no apparent major mergers, and is relatively isolated with respect to other nearby bright galaxies. This makes NGC 1097 a good case study for exploring baryons in a paradigmatic bright-galaxy halo. Lyman-alpha absorption is detected along all sightlines and Si III 1206 is found along the 3 smallest impact parameter sightlines; metal lines of C II, Si II and Si IV are only found with certainty towards the inner-most sightline. The kinematics of the absorption lines are best replicated by a model with a disk-like distribution of gas approximately planar to the observed 21 cm H I disk, that is rotating more slowly than the inner disk, and into which gas is infalling from the intergalactic medium. Some part of the absorption towards the inner-most sightline may arise either from a small-scale outflow, or from tidal debris associated with the minor merger that gives rise to the well known `dog-leg stellar stream that projects from NGC 1097. When compared to other studies, NGC 1097 appears to be a `typical absorber, although the large dispersion in absorption line column density and equivalent width in a single halo goes perhaps some way in explaining the wide range of these values seen in higher-redshift studies.
We characterize the physical properties of the cool T ~10^4 K circumgalactic medium surrounding z ~2-3 quasar host galaxies, which are predicted to evolve into present day massive ellipticals. Using a statistical sample of 14 quasar pairs with projec ted separation < 300 kpc and high dispersion, high S/N spectra, we find extreme kinematics with low metal ion lines typically spanning ~ 500 km/s, exceeding any previously studied galactic population. The CGM is significantly enriched, even beyond the virial radius, with a median metallicity [M/H] ~ -0.6. The alpha/Fe abundance ratio is enhanced, suggesting that halo gas is primarily enriched by core-collapse supernovae. The projected cool gas mass within the virial radius is estimated to be 1.9*10^11 M_sun (R_perp/160 kpc)^2, accounting for ~ 1/3 of the galaxy halo baryonic budget. The ionization state of CGM gas increases with projected distance from the foreground quasars, contrary to expectation if the quasar dominates the ionizing radiation flux. However, we also found peculiarities not exhibited in the CGM of other galaxy populations. In one absorption system, we may be detecting unresolved fluorescent Ly-alpha emission, and another system shows strong NV lines. Taken together these anomalies suggest that transverse sightlines are at least in some cases possibly illuminated. We also discovered a peculiar case where detection of the CII* fine structure line implies an electron density > 100 cm^-3 and subparsec scale gas clumps.
In order to study the circumgalactic medium (CGM) of galaxies we develop an automated pipeline to estimate the optical continuum of quasars and detect intervening metal absorption line systems with a matched kernel convolution technique and adaptive S/N criteria. We process $sim$ one million quasars in the latest Data Release 16 (DR16) of the Sloan Digital Sky Survey (SDSS) and compile a large sample of $sim$ 160,000 MgII absorbers, together with $sim$ 70,000 FeII systems, in the redshift range $0.35<z_{abs}<2.3$. Combining these with the SDSS DR16 spectroscopy of $sim1.1$ million luminous red galaxies (LRGs) and $sim 200,000$ emission line galaxies (ELGs), we investigate the nature of cold gas absorption at $0.5<z<1$. These large samples allow us to characterize the scale dependence of MgII with greater accuracy than in previous work. We find that there is a strong enhancement of MgII absorption within $sim 50$ kpc of ELGs, and the covering fraction within $0.5r_{rm vir}$ of ELGs is 2-5 times higher than for LRGs. Beyond 50 kpc, there is a sharp decline in MgII for both kinds of galaxies, indicating a transition to the regime where the CGM is tightly linked with the dark matter halo. The MgII covering fraction correlates strongly with stellar mass for LRGs, but weakly for ELGs, where covering fractions increase with star formation rate. Our analysis implies that cool circumgalactic gas has a different physical origin for star forming versus quiescent galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا