ﻻ يوجد ملخص باللغة العربية
Let $mathbf{p}$ be a configuration of $n$ points in $mathbb{R}^d$ for some $n$ and some $d ge 2$. Each pair of points has a Euclidean length in the configuration. Given some graph $G$ on $n$ vertices, we measure the point-pair lengths corresponding to the edges of $G$. In this paper, we study the question of when a generic $mathbf{p}$ in $d$ dimensions will be uniquely determined (up to an unknowable Euclidean transformation) from a given set of point-pair lengths together with knowledge of $d$ and $n$. In this setting the lengths are given simply as a set of real numbers; they are not labeled with the combinatorial data that describes which point-pair gave rise to which length, nor is data about $G$ given. We show, perhaps surprisingly, that in terms of generic uniqueness, labels have no effect. A generic configuration is determined by an unlabeled set of point-pair lengths (together with $d$ and $n$) iff it is determined by the labeled edge lengths.
This note gives a detailed proof of the following statement. Let $din mathbb{N}$ and $m,n ge d + 1$, with $m + n ge binom{d+2}{2} + 1$. Then the complete bipartite graph $K_{m,n}$ is generically globally rigid in dimension $d$.
In this paper we study the property of generic global rigidity for frameworks of graphs embedded in d-dimensional complex space and in a d-dimensional pseudo-Euclidean space ($R^d$ with a metric of indefinite signature). We show that a graph is gener
A 2-dimensional point-line framework is a collection of points and lines in the plane which are linked by pairwise constraints that fix some angles between pairs of lines and also some point-line and point-point distances. It is rigid if every contin
A bar-joint framework $(G,p)$ in a (non-Euclidean) real normed plane $X$ is the combination of a finite, simple graph $G$ and a placement $p$ of the vertices in $X$. A framework $(G,p)$ is globally rigid in $X$ if every other framework $(G,q)$ in $X$
Let $G$ be a $3$-connected graph with $n$ vertices and $m$ edges. Let $mathbf{p}$ be a randomly chosen mapping of these $n$ vertices to the integer range $[1..2^b]$ for $bge m^2$. Let $mathbf{l}$ be the vector of $m$ Euclidean lengths of $G$s edges u