ﻻ يوجد ملخص باللغة العربية
The experimental manifestation of topological effects in bulk materials under ambient conditions, especially those with practical applications, has attracted enormous research interest. Recent discovery of Weyl semimetal provides an ideal material platform for such endeavors. The Berry curvature in a Weyl semimetal becomes singular at the Weyl node, creating an effective magnetic monopole in the k-space. A pair of Weyl nodes carry quantized effective magnetic charges with opposite signs, and therefore, opposite chirality. Although Weyl-point-related signatures such as chiral anomaly and non-closing surface Fermi arcs have been detected through transport and ARPES measurements, direct experimental evidence of the effective k-space monopole of the Weyl nodes has so far been lacking. In this work, signatures of the singular topology in a type-II Weyl semimetal TaIrTe4 is revealed in the photo responses, which are shown to be directly related to the divergence of Berry curvature. As a result of the divergence of Berry curvature at the Weyl nodes, TaIrTe4 exhibits unusually large photo responsivity of 130.2 mA/W with 4-{mu}m excitation in an unbiased field effect transistor at room temperature arising from the third-order nonlinear optical response. The room temperature mid-IR responsivity is approaching the performance of commercial HgCdTe detector operating at low temperature, making Type-II Weyl semimetal TaIrTe4 of practical importance in terms of photo sensing and solar energy harvesting. Furthermore, the high shift photocurrent response at the Weyl cones is found to enhance the circularly polarized galvanic response from Weyl cones with opposite chirality, which opens new experimental possibilities for studying and controlling the chiral polarization of Weyl Fermions through an in-plane DC electric field in addition to the optical helicities.
Topological Weyl semimetals (WSMs) have been predicted to be excellent candidates for detecting Berry curvature dipole (BCD) and the related non-linear effects in electronics and optics due to the large Berry curvature concentrated around the Weyl no
The quest for nonmagnetic Weyl semimetals with high tunability of phase has remained a demanding challenge. As the symmetry breaking control parameter, the ferroelectric order can be steered to turn on/off the Weyl semimetals phase, adjust the band s
Weyl fermions play a major role in quantum field theory but have been quite elusive as fundamental particles. Materials based on quasi two-dimensional bismuth layers were recently designed and provide an arena for the study of the interplay between a
Weyl semimetal emerges as a new topologically nontrivial phase of matter, hosting low-energy excitations of massless Weyl fermions. Here, we present a comprehensive study of the type-II Weyl semimetal WP2. Transport studies show a butterfly-like magn
Periodically driven systems provide tunable platforms to realize interesting Floquet topological phases and phase transitions. In electronic systems with Weyl dispersions, the band crossings are topologically protected even in the presence of time-pe