ترغب بنشر مسار تعليمي؟ اضغط هنا

Berry Curvature Enhanced Nonlinear Photogalvanic Response of Type-II Weyl Cone

226   0   0.0 ( 0 )
 نشر من قبل Junchao Ma
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The experimental manifestation of topological effects in bulk materials under ambient conditions, especially those with practical applications, has attracted enormous research interest. Recent discovery of Weyl semimetal provides an ideal material platform for such endeavors. The Berry curvature in a Weyl semimetal becomes singular at the Weyl node, creating an effective magnetic monopole in the k-space. A pair of Weyl nodes carry quantized effective magnetic charges with opposite signs, and therefore, opposite chirality. Although Weyl-point-related signatures such as chiral anomaly and non-closing surface Fermi arcs have been detected through transport and ARPES measurements, direct experimental evidence of the effective k-space monopole of the Weyl nodes has so far been lacking. In this work, signatures of the singular topology in a type-II Weyl semimetal TaIrTe4 is revealed in the photo responses, which are shown to be directly related to the divergence of Berry curvature. As a result of the divergence of Berry curvature at the Weyl nodes, TaIrTe4 exhibits unusually large photo responsivity of 130.2 mA/W with 4-{mu}m excitation in an unbiased field effect transistor at room temperature arising from the third-order nonlinear optical response. The room temperature mid-IR responsivity is approaching the performance of commercial HgCdTe detector operating at low temperature, making Type-II Weyl semimetal TaIrTe4 of practical importance in terms of photo sensing and solar energy harvesting. Furthermore, the high shift photocurrent response at the Weyl cones is found to enhance the circularly polarized galvanic response from Weyl cones with opposite chirality, which opens new experimental possibilities for studying and controlling the chiral polarization of Weyl Fermions through an in-plane DC electric field in addition to the optical helicities.

قيم البحث

اقرأ أيضاً

Topological Weyl semimetals (WSMs) have been predicted to be excellent candidates for detecting Berry curvature dipole (BCD) and the related non-linear effects in electronics and optics due to the large Berry curvature concentrated around the Weyl no des. And yet, linearized models of isolated tilted Weyl cones only realize a diagonal non-zero BCD tensor which sum to zero in the model of WSM with multiple Weyl nodes in the presence of mirror symmetry. On the other hand, recent textit{ab initio} work has found that realistic WSMs like TaAs-type or MoTe$_2$-type compounds, which have mirror symmetry, indeed show an off-diagonal BCD tensor with an enhanced magnitude for its non-zero components. So far, there is a lack of theoretical work addressing this contradiction for 3D WSMs. In this paper, we systematically study the BCD in 3D WSMs using lattice Weyl Hamiltonians, which go beyond the linearized models. We find that the non-zero BCD and its related important features for these WSMs do not rely on the contribution from the Weyl nodes. Instead, they are dependent on the part of the Fermi surface that lies textit{between} the Weyl nodes, in the region of the reciprocal space where neighboring Weyl cones overlap. For large enough chemical potential such Fermi surfaces are present in the lattice Weyl Hamiltonians as well as in the realistic WSMs. We also show that, a lattice Weyl Hamitonian with a non-zero chiral chemical potential for the Weyl cones can also support dips or peaks in the off-diagonal components of the BCD tensor near the Weyl nodes themselves, consistent with recent textit{ab initio} work.
The quest for nonmagnetic Weyl semimetals with high tunability of phase has remained a demanding challenge. As the symmetry breaking control parameter, the ferroelectric order can be steered to turn on/off the Weyl semimetals phase, adjust the band s tructures around the Fermi level, and enlarge/shrink the momentum separation of Weyl nodes which generate the Berry curvature as the emergent magnetic field. Here, we report the realization of a ferroelectric nonmagnetic Weyl semimetal based on indium doped Pb1 xSnxTe alloy where the underlying inversion symmetry as well as mirror symmetry is broken with the strength of ferroelectricity adjustable via tuning indium doping level and Sn/Pb ratio. The transverse thermoelectric effect, i.e., Nernst effect both for out of plane and in plane magnetic field geometry, is exploited as a Berry curvature sensitive experimental probe to manifest the generation of Berry curvature via the redistribution of Weyl nodes under magnetic fields. The results demonstrate a clean non-magnetic Weyl semimetal coupled with highly tunable ferroelectric order, providing an ideal platform for manipulating the Weyl fermions in nonmagnetic system.
110 - M. Chinotti , A. Pal , W.J. Ren 2016
Weyl fermions play a major role in quantum field theory but have been quite elusive as fundamental particles. Materials based on quasi two-dimensional bismuth layers were recently designed and provide an arena for the study of the interplay between a nisotropic Dirac fermions, magnetism and structural changes, allowing the formation of Weyl fermions in condensed matter. Here, we perform an optical investigation of YbMnBi$_2$, a representative type II Weyl semimetal, and contrast its excitation spectrum with the optical response of the more conventional semimetal EuMnBi$_2$. Our comparative study allows us disentangling the optical fingerprints of type II Weyl fermions, but also challenge the present theoretical understanding of their electrodynamic response.
Weyl semimetal emerges as a new topologically nontrivial phase of matter, hosting low-energy excitations of massless Weyl fermions. Here, we present a comprehensive study of the type-II Weyl semimetal WP2. Transport studies show a butterfly-like magn etoresistance at low temperature, reflecting the anisotropy of the electron Fermi surfaces. The four-lobed feature gradually evolves into a two-lobed one upon increasing temperature, mainly due to the reduced relative contribution of electron Fermi surfaces compared to hole Fermi surfaces for the magnetoresistance. Moreover, angle-dependent Berry phase is further discovered from the quantum oscillations, which is ascribed to the effective manipulation of the extremal Fermi orbits by the magnetic field to feel the nearby topological singularities in the momentum space. The revealed topological characters and anisotropic Fermi surfaces of WP2 substantially enrich the physical properties of Weyl semimetals and hold great promises in topological electronic and Fermitronic device applications.
Periodically driven systems provide tunable platforms to realize interesting Floquet topological phases and phase transitions. In electronic systems with Weyl dispersions, the band crossings are topologically protected even in the presence of time-pe riodic perturbations. This robustness permits various routes to shift and tilt the Weyl spectra in the momentum and energy space using circularly polarized light of sufficient intensity. We show that type-II Weyl fermions, in which the Weyl dispersions are tilted with the appearance of pocket-like Fermi surfaces, can be induced in driven Dirac semimetals and line node semimetals. Under a circularly polarized drive, both semimemtal systems immediately generate Weyl node pairs whose types can be further controlled by the driving amplitude and direction. The resultant phase diagrams demonstrate experimental feasibilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا