ﻻ يوجد ملخص باللغة العربية
We consider a discrete time simple symmetric random walk among Bernoulli obstacles on $mathbb{Z}^d$, $dgeq 2$, where the walk is killed when it hits an obstacle. It is known that conditioned on survival up to time $N$, the random walk range is asymptotically contained in a ball of radius $varrho_N=C N^{1/(d+2)}$ for any $dgeq 2$. For $d=2$, it is also known that the range asymptotically contains a ball of radius $(1-epsilon)varrho_N$ for any $epsilon>0$, while the case $dgeq 3$ remains open. We complete the picture by showing that for any $dgeq 2$, the random walk range asymptotically contains a ball of radius $varrho_N-varrho_N^epsilon$ for some $epsilon in (0,1)$. Furthermore, we show that its boundary is of size at most $varrho_N^{d-1}(log varrho_N)^a$ for some $a>0$.
Place an obstacle with probability $1-p$ independently at each vertex of $mathbb Z^d$ and consider a simple symmetric random walk that is killed upon hitting one of the obstacles. For $d geq 2$ and $p$ strictly above the critical threshold for site p
We consider a Random Walk in Random Environment (RWRE) moving in an i.i.d. random field of obstacles. When the particle hits an obstacle, it disappears with a positive probability. We obtain quenched and annealed bounds on the tails of the survival t
For n>=1 let X_n be a vector of n independent Bernoulli random variables. We assume that X_n consists of M blocks such that the Bernoulli random variables in block i have success probability p_i. Here M does not depend on n and the size of each block
We consider a random walk with a negative drift and with a jump distribution which under Cramers change of measure belongs to the domain of attraction of a spectrally positive stable law. If conditioned to reach a high level and suitably scaled, this
We study the scaling limit of the capacity of the range of a simple random walk on the integer lattice in dimension four. We establish a strong law of large numbers and a central limit theorem with a non-gaussian limit. The asymptotic behaviour is an