ﻻ يوجد ملخص باللغة العربية
Tibet is known as the third pole of the earth, as high as the South Pole and North Pole. The Ngari (Ali) observatory in Tibet has the advantage of plenty of photometric night, low precipitable water vapor, high transmittance, good seeing. It is a good site, and promising to be one of the best place for infrared and submillimeter observations in the world. However, there is no data available for sky background brightness in such place, which restrict the astronomical development of the sites. In the near infrared band of J, H, Ks, a NIR sky brightness monitor (NISBM) is designed based on InGaAs photoelectric diode. By using the method of chopper modulation and digital lock-in amplifier processing, the SNR (Signal Noise Ratio), detectivity and the data acquisition speed of the device is greatly improved. For each band of J, H, Ks, an independent instrument is designed and calibrated in laboratory. The NISBM has been installed in Ngari observatory in July of 2017 and obtained the first data of NIR sky brightness at Ngari observatory.
We present optical UBVRI zenith night sky brightness measurements collected on eighteen nights during 2013--2016 and SQM measurements obtained daily over twenty months during 2014--2016 at the Observatorio Astronomico Nacional on the Sierra San Pedro
The Sky Brightness Monitor (SBM) is an important instrument to measure the brightness level for the sky condition, which is a critical parameter for judging a site for solar coronal observations. In this paper we present an automatic method for the p
The photometric sky quality of Mt. Shatdzhatmaz, the site of Sternberg Astronomical Institute Caucasian Observatory 2.5 m telescope, is characterized here by the statistics of the night-time sky brightness and extinction. The data were obtained as a
Gaia is currently revolutionizing modern astronomy. However, much of the Galactic plane, center and the spiral arm regions are obscured by interstellar extinction, rendering them inaccessible because Gaia is an optical instrument. An all-sky near inf
Vortex coronagraphs have been shown to be a promising avenue for high-contrast imaging in the close-in environment of stars at thermal infrared (IR) wavelengths. They are included in the baseline design of METIS. To ensure good performance of these c