ﻻ يوجد ملخص باللغة العربية
Ontology alignment is the task of identifying semantically equivalent entities from two given ontologies. Different ontologies have different representations of the same entity, resulting in a need to de-duplicate entities when merging ontologies. We propose a method for enriching entities in an ontology with external definition and context information, and use this additional information for ontology alignment. We develop a neural architecture capable of encoding the additional information when available, and show that the addition of external data results in an F1-score of 0.69 on the Ontology Alignment Evaluation Initiative (OAEI) largebio SNOMED-NCI subtask, comparable with the entity-level matchers in a SOTA system.
We introduce BioCoM, a contrastive learning framework for biomedical entity linking that uses only two resources: a small-sized dictionary and a large number of raw biomedical articles. Specifically, we build the training instances from raw PubMed ar
Despite the widespread success of self-supervised learning via masked language models (MLM), accurately capturing fine-grained semantic relationships in the biomedical domain remains a challenge. This is of paramount importance for entity-level tasks
Semantic embedding has been widely investigated for aligning knowledge graph (KG) entities. Current methods have explored and utilized the graph structure, the entity names and attributes, but ignore the ontology (or ontological schema) which contain
Injecting external domain-specific knowledge (e.g., UMLS) into pretrained language models (LMs) advances their capability to handle specialised in-domain tasks such as biomedical entity linking (BEL). However, such abundant expert knowledge is availa
Biomedical entity linking is the task of identifying mentions of biomedical concepts in text documents and mapping them to canonical entities in a target thesaurus. Recent advancements in entity linking using BERT-based models follow a retrieve and r