ترغب بنشر مسار تعليمي؟ اضغط هنا

Head-on collisions and orbital mergers of Proca stars

141   0   0.0 ( 0 )
 نشر من قبل Nicolas Sanchis-Gual
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Proca stars are self-gravitating Bose-Einstein condensates obtained as numerical stationary solutions of the Einstein-(complex)-Proca system. These solitonic can be both stable and form dynamically from generic initial data by the mechanism of gravitational cooling. In this paper we further explore the dynamical properties of these solitonic objects by performing both head-on collisions and orbital mergers of equal mass Proca stars, using fully non-linear numerical evolutions. For the head-on collisions, we show that the end point and the gravitational waveform from these collisions depends on the compactness of the Proca star. Proca stars with sufficiently small compactness collide leaving a stable Proca star remnant. But more compact Proca stars collide to form a transient ${it hypermassive}$ Proca star, which ends up decaying into a black hole, albeit temporarily surrounded by Proca quasi-bound states. The unstable intermediate stage can leave an imprint in the waveform, making it distinct from that of a head-on collision of black holes. The final quasi-normal ringing matches that of Schwarzschild black hole, even though small deviations may occur, as a signature of sufficiently non-linear and long-lived Proca quasi-bound states. For the orbital mergers, the outcome also depends on the compactness of the stars. For most compact stars, the binary merger forms a Kerr black hole which retains part of the initial orbital angular momentum, being surrounded by a transient Proca field remnant; in cases with lower compactness, the binary merger forms a massive Proca star with angular momentum, but out of equilibrium. As in previous studies of (scalar) boson stars, the angular momentum of such objects appears to converge to zero as a final equilibrium state is approached.



قيم البحث

اقرأ أيضاً

It has been conjectured that in head-on collisions of neutron stars (NSs), the merged object would not collapse promptly even if the total mass is higher than the maximum stable mass of a cold NS. In this paper, we show that the reverse is true: even if the total mass is {it less} than the maximum stable mass, the merged object can collapse promptly. We demonstrate this for the case of NSs with a realistic equation of state (the Lattimer-Swesty EOS) in head-on {it and} near head-on collisions. We propose a ``Prompt Collapse Conjecture for a generic NS EOS for head on and near head-on collisions.
229 - Ke-Jian Jin , Wai-Mo Suen 2006
We found type I critical collapses of compact objects modeled by a polytropic equation of state (EOS) with polytropic index $Gamma=2$ without the ultra-relativistic assumption. The object is formed in head-on collisions of neutron stars. Further we s howed that the critical collapse can occur due to a change of the EOS, without fine tuning of initial data. This opens the possibility that a neutron star like compact object, not just those formed in a collision, may undergo a critical collapse in processes which slowly change the EOS, such as cooling.
We report a degeneracy between the gravitational-wave signals from quasi-circular precessing black-hole mergers and those from extremely eccentric mergers, namely head-on collisions. Performing model selection on numerically simulated signals of head -on collisions using models for quasi-circular binaries we find that, for signal-to-noise ratios of 15 and 25, typical of Advanced LIGO observations, head-on mergers with respective total masses of $Min (125,300)M_odot$ and $Min (200,440)M_odot$ would be identified as precessing quasi-circular intermediate-mass black hole binaries, located at a much larger distance. Ruling out the head-on scenario would require to perform model selection using currently nonexistent waveform models for head-on collisions, together with the application of astrophysically motivated priors on the (rare) occurrence of those events. We show that in situations where standard parameter inference of compact binaries may report component masses inside (outside) the pair-instability supernova gap, the true object may be a head-on merger with masses outside (inside) this gap. We briefly discuss the potential implications of these findings for the recent gravitational-wave detection GW190521, which we analyse in detail in [Phys. Rev. Lett. 126, 081101].
We perform fully non-linear numerical simulations within the spherically symmetric Einstein-(complex)Proca system. Starting with Proca field distributions that obey the Hamiltonian, momentum and Gaussian constraints, we show that the self-gravity of the system induces the formation of compact objects, which, for appropriate initial conditions, asymptotically approach stationary soliton-like solutions known as Proca stars. The excess energy of the system is dissipated by the mechanism of textit{gravitational cooling} in analogy to what occurs in the dynamical formation of scalar boson stars. We investigate the dependence of this process on the phase difference between the real and imaginary parts of the Proca field, as well as on their relative amplitudes. Within the timescales probed by our numerical simulations the process is qualitatively insensitive to either choice: the phase difference and the amplitude ratio are conserved during the evolution. Thus, whereas a truly stationary object is expected to be approached only in the particular case of equal amplitudes and opposite phases, quasi-stationary compact solitonic objects are, nevertheless, formed in the general case.
We analyze the effect of Proca mass and orbital angular momentum of photons imposed by a structured plasma in Kerr-Newman and Reissner-Nordstrom-de Sitter spacetimes. The presence of characteristic lengths in a turbulent plasma converts the virtual P roca photon mass on orbital angular momentum, with the result of decreasing the virtual photon mass. The combination of this plasma effect and that of the gravitational field leads to a new astrophysical phenomenon that imprints a specific distribution of orbital angular momentum into different frequencies of the light emitted from the neighborhood of such a black hole. The determination of the orbital angular momentum spectrum of the radiation in different frequency bands leads to a complete characterization of the electrostatic and gravitational field of the black hole and of the plasma turbulence, with fundamental astrophysical and cosmological implications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا