ﻻ يوجد ملخص باللغة العربية
Proca stars are self-gravitating Bose-Einstein condensates obtained as numerical stationary solutions of the Einstein-(complex)-Proca system. These solitonic can be both stable and form dynamically from generic initial data by the mechanism of gravitational cooling. In this paper we further explore the dynamical properties of these solitonic objects by performing both head-on collisions and orbital mergers of equal mass Proca stars, using fully non-linear numerical evolutions. For the head-on collisions, we show that the end point and the gravitational waveform from these collisions depends on the compactness of the Proca star. Proca stars with sufficiently small compactness collide leaving a stable Proca star remnant. But more compact Proca stars collide to form a transient ${it hypermassive}$ Proca star, which ends up decaying into a black hole, albeit temporarily surrounded by Proca quasi-bound states. The unstable intermediate stage can leave an imprint in the waveform, making it distinct from that of a head-on collision of black holes. The final quasi-normal ringing matches that of Schwarzschild black hole, even though small deviations may occur, as a signature of sufficiently non-linear and long-lived Proca quasi-bound states. For the orbital mergers, the outcome also depends on the compactness of the stars. For most compact stars, the binary merger forms a Kerr black hole which retains part of the initial orbital angular momentum, being surrounded by a transient Proca field remnant; in cases with lower compactness, the binary merger forms a massive Proca star with angular momentum, but out of equilibrium. As in previous studies of (scalar) boson stars, the angular momentum of such objects appears to converge to zero as a final equilibrium state is approached.
It has been conjectured that in head-on collisions of neutron stars (NSs), the merged object would not collapse promptly even if the total mass is higher than the maximum stable mass of a cold NS. In this paper, we show that the reverse is true: even
We found type I critical collapses of compact objects modeled by a polytropic equation of state (EOS) with polytropic index $Gamma=2$ without the ultra-relativistic assumption. The object is formed in head-on collisions of neutron stars. Further we s
We report a degeneracy between the gravitational-wave signals from quasi-circular precessing black-hole mergers and those from extremely eccentric mergers, namely head-on collisions. Performing model selection on numerically simulated signals of head
We perform fully non-linear numerical simulations within the spherically symmetric Einstein-(complex)Proca system. Starting with Proca field distributions that obey the Hamiltonian, momentum and Gaussian constraints, we show that the self-gravity of
We analyze the effect of Proca mass and orbital angular momentum of photons imposed by a structured plasma in Kerr-Newman and Reissner-Nordstrom-de Sitter spacetimes. The presence of characteristic lengths in a turbulent plasma converts the virtual P